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Time Evolution of Biochemical Materials: Markov chains and Markov-
States Models
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ABSTRACT
The biochemical materials are described in terms of the opportune Hierarchical Markov-State Model and of the originating chain(s).

The time evolution of the equations of motion of the Markov chain is controlled; to this aim, the transitions form the unrestrained simulations and those 
between the local Markov-State Models are compared.

The formalisms of quantum-mechanical systems are applied in the opportune measure spaces.

The ergodicity of the Markov chains is controlled.

The numerical simulations, the properties to be requested on numerical approximations are studied.

As a result, the ergodicity of the Markov chains provides with the possibility to impose the Sinai Markov partitions, which enable the von Neumann 
conditions on the Bloch equations.
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Introduction
The Markov chains from which the MSM’s of biological 
macromolecules in molecular processes originate are 
investigated. The Markov Models are presented as the MSM and 
the Hierarchical MSM.

The quantum-mechanical properties of the Markov chains are 
described on Banach spaces; the specifications arising from the 
stochastic approach allow one to improve to a Hilbert space. The 
von Neumann conditions are requested after the density operator.

The request of ergodic chains allows one to adopt the proper Sinai 
partition. The hypotheses to be imposed to prove the ergodicity 
of the perturbed chain that must be realised are envisaged. Long-
time-scale EOM’s of biological macromolecules is investigated: 
for this the propagation of the Markov chain is studied.

The Hierarchical MSM of molecular processes is set: the 
time evolution of the transition probabilities are investigated, 

the implied time-scales and number of the macro-states are 
scrutinised, the decay properties are enquired, the corre- 
sponding construction of the Markov-State-Models is indicated.

The Markovian Time evolution of quantum-mechanical systems 
is studied:  to this purposes, several paradigms are studied. The 
open quantum-mechanical systems and control-of-interactions 
methods are explored. In particular, stochastic systems are 
used: the control of time evolution of transition probabilities 
between different states in the local MSM, obtained from 
classical ’unrestrained’ simulations, and that of the transition 
probabilities between states in differ- ent MSM’s are identified. 
More in detail, the control of the derivatives of the stationary 
distributions in perturbation theory from (finite) Markov chains 
is implemented.

The request of the ergodicity of the Markov chains is requested 
for the Sinai Anosov partitions to apply, for the von Neumann 
conditions to be imposed on the corresponding Bloch equations.

The study of the measure of the chains implied in the biochemical 
processes is performed in [1]. The paper is organised as follows.
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In Section 2, the longtime scale of the equations of motion of 
the systems corresponding to biological macromolecules is 
established.

In Section 3, the Markov-State Model corresponding to 
biological macromolecules systems is constructed.

In Section 4, the Markovian time evolution of open quantum-
mechanical systems is set.

In Section 5, the perturbation theory of finite Markov chains is 
presented and used.

In Section 6, the request of ergodicity of the Markov chain is 
enquired. In Section 7, the numerical simulations are explored.

Perpsective studies are envisaged in Section 8.

Long-Time-Scale EOM’s of Biological Macro- Molecules
The molecular processes from Hierarchical MSM are described 
from X(t) the ‘probability’ of the n - th state to be occupied at eh 
time t, with  the (constant) transition-rate matrix, whose entries 
are kij the transition from i to j.
The memory-less EOM’s are given as 
  dX
       = X(t)K               (1)
   dt

after the time steps τ.

The transition-probability matrix  is defined, whose entries are 
specified as pij the transition from i to j.

Propagation of the Markov Chain
The propagation of the Markov chain is described as
 X(0) (τ) = X(τ),                  (2a)
 X(nτ) = X(0) | i(τ) |n.                (2b)

The Hierarchical MSM of molecular processes is defined after 
from Eq.’s (2) as one with pi(t) the probability of the system to 
occupy the state i at the time  t,  wij the  transition  rate  from  i  
to j determined from the unrestrained simulations in the local 
MSM, kij the transition rate form i to j such that each state is in a 
different local Markov State.

Let n* be the MSM containing the state i; the partition Sn is 
defined as the set of Markov states composing the Markov 
model. This way, pi(t) are the evolution of probabilities, which 
evolve in time as after the equations of motion

(3)

where wp represent the transitions from the unrestrained 
simulations, and kp describe transition between local MSM’s. 
The implied time-scales and number of the macro-states can 
therefore be evaluated.

The eigen-vectors decomposition of the transition-probability 
matrix are the Xi states-distribution from which the transition 
between groups of states hap- pens:  the transition-probability 
matrix TPM (τ ) is defined as

Xi (τ ) = μiXi                 (4)

for which the eigenvectors-decomposition of the transition-
probability matrix are defined.

The eigenvalue of a mode is defined from the decay of the 
occupancy of a mode.

As an example, the i - th mode at t = 0 is considered within the 
transition towards Ni(0) = 1, with t = τ and Ni(τ ) = µi.

The decay properties can be studied as well.
The time dependence of each mode is shaped as an exponential-
decay one, i.e. one with  the decay constant. The implied time 
scale is τi, i.e. the ’life-time’ of the transition mode used to 
construct the time-scale of the dynamics of the system in order 
to identify the modes.

Construction of the MSM
The objects Ni(t) and Ni(τ ) are defined from [5] as
Ni(t) = e-1/τi ,               (5a)
Ni(τ) = e-1/τi ,               (5b)

where τi used to determine the Markovian time-scales of the 
system. More in detail, all the micro-states are requested to be 
Markovian, and all the implied time-scales are imposed to be 
constant, independently of the ’lag’ time. These conditions are 
analytically expressed as
Ni(τ ) = e-τ/taui ≡µi,               (6a)

τi= -τ                (6b)     lnμi

Differently, the ’wished’ Markovian time-scales should have 
a raise and then flatten. As an example, it is useful to remark 
that, at small ’lag’ times, a MSM is required to have more 
macrostates in order to make sure that each micro-state is 
memory- less; differently, a shorter ’lag’ time is used to describe 
higher-resolution MSM’s, for which more energy minima are 
described. A a lower-resolution MSM, only a few macro-states 
are separated after high-energy barriers

Markovian Time-Evolution of Open Quantum- Mechanical 
System
The Markovian time-evolution of open quantum-mechanical 
systems is analysed within the weak-coupling limit as a general 
finite-dimensional system weakly-coupled with a finite-heat 
bath for which the relaxation to the Gibbs state is wished as 
follows [8].

Let B be a Banach space.  Be 0 the projector to the Banach 
space

1 ≡ - 0;                  (7)

this way, B0 is defined as
B0 ≡ B                  (8)
and is designed to describe the system, while B1 is defined as
B1 ≡ 1                  (9)
and is intended to describe a heat bath.

The free evolution after a strong continuous, one-parameter 
group Ut of isometries on B is studied in [12].
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The isometries leave B0 and B1 invariant: let  be an infinitesimal 
generator, closed, densely-defined as

i  ≡ i .                 (10)
Be  the perturbation:   is bounded on B, i.e.  after that
Aij ≡ PiAPj                 (11)
Under the hypothesis
A00 = P0AP0 ≡ 0,                 (12)

the following definition is given:
Definition: Uλ

t is one-parameter group generated after the 
infinitesimal generator defined after the parameter λ
Ut

λ ≡ Z + λA11 Ɐt :                (13)

the property
[Ut

λ , 0] = 0                 (14)
is implied.

Definition:  The operator  is defined as
Vt

λ = Z + λA,                 (15)

and is decomposed as

                (16)

The integral in Eq. (16) is bounded everywhere and strongly 
continuous. The properties of the operator  are investigated in 
[7].
 
The operator  is defined as
                (17)
where the followinf representations hold

                (18a)

                (18a)

The system investigated lives on B0: from now on, no more 
further reference to the projector P0 is needed.

Definition: As
A11 ≠ 0,                (19)

then Ar is expressedas
Ar = U-trAUtr.                (20)

Definition: Given ϕ  B0, it is defined as
ϕt ≡ Wt

λ ϕ,               (21)

which is further expressed as
                 (22)

The EOM’s are formally obtained as

                 (23)

The element Wt
λ is implied to contain memory terms: the 

memory terms are small (in λ2) wrt the free term. It is therefore 
nencessary to study the behaviour of the limit λ → 0.

The following defifnition is needed.
Definition: the operator  is written as

Yt
λ ≡ U-tWλt                        (24)

the limit t → 0 must be discussed [8].

The behaviour λ → 0 is discussed in comparison with the 
stochastic approach.

Stochastic-Differential-Equations Approach
Stochastic differential equations on B0 can be studied.

As an example, be the triple (Ω, B0, dω) the probability space. 
Let B be the space B = L1(Ω, B0, dω).
Definition: the projector P0 is defined s.t.
                (25)

with
Ut(f)(ω) = f(tω).                 (26)

This way, after tω  ΩⱯt   and ω  Ω, the interaction term 
is given as A(ω): A(ω) is a ’random’ operator-valued function.

The following request is to be investigated:
|| P1 ||= 1                 (27)

The irreverisibility of the process due to the initial conditions 
starting from an evolution equation on B is finishing with a 
semigroup on B0 [6].

Free Heat Bath
A system is demonstrated in Markovian equilibrium as the 
equilibrium is achieved as as its Gibbs state [8].

B0 is (also) the space of some trace class operators P0 : B → B0 
in the partial trace.

Let ρ be an arbitrary trace class operator whose free evolution 
is given after

the one-parameter group of isometries on B with (formally-
defined) infinitesimal generator.

The perturbation A is introduced.
The equilibrium state of the Markov processes is given as 
condition on the temperature.

In the weak-coupling limit, the exponential-decay law is obtained 
[13]. The statistical approach is recovered at B a Banach space: 
now A = A(t) is a strongly-continuous bounded operator-valued 
function on B which defines

                 (28)

of the Banach-space evolution equation
f′(t) = λA(t)f(t)                 (29)

The Method of Stochastic Differential Equations
The method of stochastic differential equations is discussed in 
[12]. Let B0 Banach space, and let (Ω, F, dω) be the triple of the 
pertinent probability space. The following items of information 
are gathered. Let B be a Banach space s.t.

B = L∞(Ω, F, dω)                (30)
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B is the space of the essentially-bounded strongly F-measurable 
B0 -valued functions on Ω.

Furthermore, B0 identified as the constant functions on Ω.

An Example of Dissipative Operator
As an alternative example, Z a dissipative operator is conisdered 
in [11], for which the evolution on a Banach space is controlled 
after a Markov process.

An Example in a Hilbert Space
From a different perspective let B be a Hilbert space, and let eZt be 
a unitary group on B: the self-adjoint-ness of iZ is implied [12].

Furthermore, let P be the orthogonal projector onto the null 
space of Z:
if iA is a self-adjoint operator, symmetric operators are obtained 
for the description of the Markov process.

Perturbative-Approach Theory of (Finite) Markov Chains
The perturbation formalism of finite Markov chains [14] holds 
in the present case.

After a Markov chain containing a single irreducible set of states, 
the derivatives of the stationary distributions are defined, and 
those the fundamental matrix wrt transition probabilities hold.

Be α an N-state stationary Markov chain, endowed with TPM: 
the time averaged TPM always exists, and the fundamental 
matrix always exists.

The hypothesis is taken, that α contains only one subchain (i.e. 
only one irreducible set of states).

The following Theorem holds:
Theorem: the solution of the equation of the stationary 
distribution always exists.
The following corollary holds:
Corollary: so do the qualities of the system β close to α.

Ergodic Markov Chains
The hypothesis is taken, that the unperturbed system geometrically 
be ergodic (Foster-Ljapunov drift conditions); the perturbation 
is taken to be uniform in the weak sense on bounded time 
intervals: these hypotheses opens the way to the construction of 
the Markov states, i.e. such that the comparison with holds [16].

Numerical Simulations
Numerical simulation can be explored in the cases of randomly-
impulsed ODE’s, of I’to SDE’s, and of stochastic parabolic 
PDE’s (where the white noise can be approximated as Gaussian 
noise).

In the case of stochastic case PDE’s, in the geometrically-ergodic 
case, long-time weak convergence is proven: the perturbation 
theory is arising from numerical approximation [15].

Perspective Studies
The exponential-decay law is recovered from initial conditions. 
The density operator of an open quantum system can be defined 

after the inverse of the dynamical map which governs the 
evolution of the density operator. The quantum dissipation is 
studied from the von Neumann conditions in the Bloch equation: 
the first Born approximation on a Hilbert space is obtained 
after the short-time approximation of the EOM’s and after the 
short-time approximation of the EOM’s obey the von Neumann 
conditions [17].

The study the hypotheses to be imposed to prove the ergodicity 
of the perturbed chain are taken after [15].

After the ergodicity is proven, and the Siani Anosov partitions 
are allowed to be applied, the implication on the Markov 
approximations due to the correlations decay of Anosov flows is 
needed to be controlled [18].

The ergodicity of the Markov chains therefore allows one to 
impose the von Neumann conditions on the Bloch equations.
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