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Introduction
Globally, leukemia remains one of the most prevalent and life-
threatening haematological malignancies [1], ranking 15th 
in cancer incidence and 11th in cancer-related mortality, with 
over 461,000 new cases and 320,000 deaths reported in 2021 
[2]. Projections indicate a further increase by 2031, highlighting 
leukemia’s growing public health burden [3]. Despite advances 
in chemotherapy, immunotherapy, targeted therapies, and stem 

cell transplantation, relapse and drug resistance remain major 
clinical challenges, contributing to nearly 90% of cancer-related 
deaths [4]. Leukemia originates from cells at different stages of 
hematopoietic maturation, contributing to its marked biological 
heterogeneity. Advances in the identification of oncogenic 
drivers and survival pathways have enabled the development 
of targeted therapies, including kinase and antiapoptotic protein 
inhibitors [5]. Nonetheless, recent molecular profiling has 
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Background: Leukemia is a major cause of cancer-related morbidity and mortality, representing the most common childhood malignancy and remaining 
associated with poor outcomes and relapse in adult acute subtypes. Despite therapeutic progress in leukemia management, survival outcomes remain poor, 
highlighting the urgent need for reliable biomarkers and novel therapeutic targets. Heat shock protein 70 (HSP70), a molecular chaperone central to protein 
folding, apoptosis regulation, and oncogenic signalling, has been increasingly implicated in leukemogenesis and therapy resistance. However, the clinical 
utility of HSP70 remains uncertain due to small cohorts and methodological heterogeneity across studies. This systematic review and meta-analysis provides 
a quantitative evaluation of HSP70 expression in leukemia and explores its potential as a diagnostic, prognostic, and therapeutic biomarker.

Methods: A systematic review was conducted in accordance with PRISMA guidelines. EBSCO, PubMed, ProQuest, ScienceDirect, and Scopus were 
searched for studies reporting quantitative HSP70 expression in leukemia and healthy controls. Eligible studies met predefined inclusion and exclusion 
criteria. Data were pooled using a random-effects model, with effect sizes calculated as standardised mean differences (Cohen’s d), and statistical analyses 
performed in IBM SPSS Statistics (v28.0).

Results: After applying eligibility criteria, data from 261 leukemia patients and 214 healthy controls across three studies (four datasets) were included. 
Pooled analysis demonstrated significantly elevated HSP70 expression in leukemia patients compared with controls (Cohen’s d = 1.498, 95% CI: 1.279 
- 1.717, p < 0.001), representing a large effect size. No heterogeneity was observed (I² = 0%). The study was prospectively registered with PROSPERO 
(CRD420251019261).

Conclusion: This meta-analysis demonstrates consistent overexpression of HSP70 in leukemia, supporting its potential as a diagnostic, prognostic, and 
therapeutic biomarker, while highlighting the need for further clinical validation.
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uncovered extensive clonal complexity, providing an explanation 
for the variable therapeutic responses observed among patients 
[7]. Resistance mechanisms, whether present at diagnosis or 
acquired during treatment, further compromise durable clinical 
benefit [7]. Collectively, these challenges underscore the urgent 
need for novel biomarkers and therapeutic targets to improve 
diagnosis, refine risk stratification, and enable personalised 
treatment approaches. Among potential candidates, heat shock 
proteins (HSPs) have emerged as promising biomarkers with 
established roles in cancer diagnosis, prognosis, and therapeutic 
targeting [8,9].

Graphical Abstract

HSPs are a highly conserved family of stress proteins first 
discovered in 1962 by Ritossa, who observed their upregulation 
in cells exposed to heat shock [10]. Subsequent studies revealed 
that HSPs respond not only to heat but also to oxidative stress, 
hypoxia, DNA damage, and inflammation [11]. Among them, 
the HSP70 family is the most widely studied, owing to its 
potent cytoprotective activity [12] Intracellular HSPs (iHSPs) 
act as molecular chaperones, maintaining proteostasis by 
folding nascent proteins, refolding damaged ones, and targeting 
irreparably misfolded proteins for degradation, thereby preventing 
toxic aggregate formation and reducing cellular stress [13,14]. 
Although traditionally characterised as intracellular, HSPs can 
also be actively released into the extracellular environment, 
primarily via extracellular vesicles (EVs), or passively through 
necrotic and apoptotic cell death [15,16]. Extracellular HSPs 
(eHSPs) function as danger-associated molecular patterns 
(DAMPs), binding pattern recognition receptors such as TLRs 
and CD91 on antigen-presenting cells [17], thereby stimulating 
cytokine release, enhancing antigen presentation, and promoting 
tumour immunosurveillance [18,19]. Their detectable presence in 
circulation underscores their potential as diagnostic biomarkers 
and therapeutic targets [20,21].

Figure 1: Mechanisms of HSP70 Release and Immunomodulatory 
Functions in Leukemia

HSP70 is secreted via extracellular vesicles (exosomes, 
microvesicles) or passively released from necrotic/apoptotic 
leukemic cells. Once in the extracellular environment, HSP70 
interacts with TLR and CD91 on antigen-presenting cells (APCs), 
promoting cytokine release, enhanced antigen presentation, and 
activation of T and NK cells, thereby contributing to tumour 
immunosurveillance [19]. Figure created using biorender.com.

HSP70 Functions and Roles in Leukemia 
The HSP70 family comprises several members distributed 
across different cellular compartments, encoded by distinct 
genes, and contributing to proteostasis in diverse contexts (Table 
1) [22,23]. Under physiological conditions, HSP70 is essential 
for hematopoietic progenitor cell maintenance, sustaining 
erythropoiesis, myelopoiesis, and thrombopoiesis [24].

Table 1: Key HSP70 Family Members
Summary of key HSP70 family members, their encoding genes, 
cellular localisation, and main functions [22,23].

HSP70 
Member Gene Primary 

Location Main Functions 

HSP70 / 
HSP72 
(major 
inducible 
form) 

HSPA1A Cytoplasm 
and nucleus

Supports in 
folding nascent 
polypeptides, 
and prevents 
aggregation of 
misfolded proteins

HSC70 
/ HSP73 
(constitutive 
form) 

HSPA8 Cytoplasm 
and nucleus 

Maintains 
protein quality 
control through 
constitutive 
chaperone activity

mtHSP70 / 
Grp75

HSPA9 Mitochondrial 
matrix 

Facilitates import 
and folding of 
proteins encoded 
by nuclear and 
mitochondrial 
DNA

GRP78 / 
BiP

HSPA5 Endoplasmic 
reticulum 

Regulates 
unfolded protein 
response (UPR), 
and Supports in 
ER protein folding 
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In cancer, however, HSP70’s cytoprotective role is subverted 
to promote malignant survival. HSP70 overexpression has 
been shown to drive leukemogenesis, therapy resistance, and 
disease progression [25,26]. For instance, AML patients with 
elevated HSP70 exhibit lower remission rates and shorter 
survival [27]. In erythroleukemia (M6-AML), dysregulated 
HSP70 disrupts GATA-1 stability, impairing differentiation 
and promoting immature progenitor accumulation [28,29]. In 
CML, HSP70 stabilises the BCR-ABL fusion protein, thereby 
sustaining oncogenic signalling and conferring resistance to 
apoptosis, even under tyrosine kinase inhibitor therapy [30]. 
Collectively, these findings illustrate HSP70’s dual nature: 
while indispensable for normal hematopoietic homeostasis, 
its dysregulation fosters leukemic progression and therapeutic 
resistance. This functional versatility underscores HSP70’s 
importance as both a mechanistic driver of leukemogenesis and 
a promising biomarker and therapeutic target.

Clinical Overview of Leukemia Subtypes 
Leukemia is classified into four main subtypes based on lineage 
(myeloid or lymphoid) and disease progression rate (acute or 
chronic): acute lymphoblastic leukemia (ALL), acute myeloid 
leukemia (AML), chronic lymphocytic leukemia (CLL), and 
chronic myeloid leukemia (CML) [31]. ALL is the most common 
childhood malignancy, whereas AML predominates in older adults 
and is associated with poor outcomes [32]. CLL is often indolent but 
can progress aggressively, while CML is driven by the BCR-ABL1 
fusion gene and advances from chronic to blast crisis phases [33]. 
Despite therapeutic advances, prognosis remains poor for many 
subtypes. The five-year survival rate is approximately 32% for 
AML and ~40% for adult ALL [34,35]. Resistance and relapse also 
remain major clinical challenges in both CML and CLL [36,37]. 
These limitations underscore the urgent need for novel biomarkers 
with diagnostic and prognostic relevance (Figure 2).

Figure 2: Historical and Projected Trends in Age-Standardised 
Incidence Rates (ASIR) of the Four Main Leukemia Subtypes 
(1985 to 2030).

Global ASIR trends for ALL, AML, CLL, and CML. Projections 
indicate a continued increase in ASIR for all subtypes, with the 
most significant rise (31.1%) expected in ALL, highlighting 
the growing epidemiological impact of leukemia in the coming 
decades [38].

HSP70-Mediated Mechanisms of Leukemic Survival
Mechanistically, HSP70 promotes leukemic survival by blocking 
apoptosis and stabilising oncogenic signalling. In the intrinsic 

pathway, it prevents Bax translocation and cytochrome c release, 
disrupting apoptosome assembly and inhibiting caspase-9 
activation. In the extrinsic pathway, HSP70 interferes with 
death receptor signalling, reducing caspase-8 activity. Together, 
these effects elevate the apoptotic threshold and decrease 
chemosensitivity [39,40] (Figure 3).
 

Figure 3: HSP70 Inhibition of Intrinsic and Extrinsic Apoptotic 
Pathways in Leukemia

HSP70 blocks Bax translocation in the intrinsic pathway, 
preventing cytochrome c release and caspase-9 activation. In 
the extrinsic pathway, it disrupts DISC formation downstream 
of death receptor signalling, limiting caspase-8 activation. By 
converging on caspase-3, these mechanisms collectively raise 
the apoptotic threshold and promote leukemic cell survival [41]. 

Beyond apoptosis, HSP70 sustains proliferative signalling by 
stabilising oncogenic drivers such as BCR-ABL in CML and 
FLT3-ITD in AML. This, in turn, activates major pathways 
including RTKs-RAS-RAF-MEK-ERK and PI3K/AKT/mTOR 
[42,43]. It also impairs the tumour suppressor p53 by blocking 
nuclear translocation and promoting degradation, which 
further drives leukemic progression [44]. Collectively, these 
mechanisms support resistance, survival, and immune evasion 
(Figure 4).

Figure 4: HSP70 as a Regulator of Survival Pathways and 
Chemoresistance in Leukemia 

Schematic illustrating how HSP70 sustains leukemic survival by 
modulating RTKs-RAS-RAFMEK-ERK and PI3K/AKT/mTOR 
pathways. It stabilises upstream effectors, enhances downstream 
signalling, and suppresses p53-dependent apoptosis, thereby 
promoting proliferation, survival, and drug resistance. These 
interactions underscore HSP70’s relevance as a diagnostic, 
prognostic, and therapeutic target in leukemia [45]. Figure 
created using Biorender.com.
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HSP70’s multifaceted roles position it as a promising therapeutic 
target. Preclinical studies have shown that selective inhibition 
of HSP70, using agents such as Pifithrin-μ and QL47, can 
restore apoptosis and disrupt oncogenic signalling in leukemia 
models [46,43]. Despite this promise, the available evidence 
remains fragmented, with most studies focusing on single 
subtypes, involving small patient cohorts, or employing variable 
methodologies [47,48]. Importantly, to date, no systematic review 
or meta-analysis has yet synthesised HSP70 expression patterns 
across all major leukemia subtypes, leaving its diagnostic and 
prognostic relevance unresolved.

Meanwhile, the rising global burden of leukemia, coupled 
with high relapse rates, and persistent drug resistance [3,4], 
underscores the urgent need for reliable, non-invasive 
biomarkers to support early detection, patient stratification, and 
therapeutic development. HSP70 is a compelling candidate due 
its established roles in leukemogenesis, apoptosis regulation, 
oncogenic signalling, and therapy resistance [45].

Therefore, this study aims to address this gap by conducting 
the first systematic review and meta-analysis to quantitatively 
assess HSP70 expression patterns across the four major 
leukemia subtypes. Specifically, it compares expression levels 
between leukemia patients and healthy individuals to evaluate 
the diagnostic, prognostic, and therapeutic potential of HSP70 
as a clinically relevant biomarker. By identifying consistent 
expression patterns and critically examining their clinical 
implications, this study endeavors to advance precision oncology 
approaches in leukemia. Based on prior evidence, the proposed 
hypothesis is that HSP70 expression is significantly upregulated 
in leukemia patients compared to healthy individuals [49,50].

Methods
Study Design
This systematic review and meta-analysis were conducted 
according to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines [51]. 
These guidelines, including the PRISMA Checklist, were 
strictly followed to ensure methodological transparency and 
reproducibility [51]. A detailed study protocol was developed 
prior to the data collection and was followed throughout the entire 
stages of screening, extraction, and analysis to minimise bias and 
enhance consistency. This project was prospectively registered 
in the International Prospective Register for Systematic Reviews 
(PROSPERO) under registration number CRD420251019261.

Eligibility Criteria 
Eligibility criteria were predefined in accordance with 
PRISMA guidelines to ensure methodological transparency and 
reproducibility [51].

Inclusion Criteria 
Studies were eligible if they: (a) involved human participants 
diagnosed with any leukemia subtype (AML, ALL, CML, or 
CLL); (b) quantitatively measured HSP70 expression in leukemia 
patients and healthy controls; (c) used validated protein-based 
assays (e.g., ELISA, Western blot) in biological fluids such 
as peripheral blood; (d) reported results as mean ± standard 
deviation (SD) or median with range/interquartile range (IQR) 
for meta-analysis, only data in mean ± SD format or convertible 

to it were included; (e) expressed HSP70 concentrations in 
ng/mL to ensure unit consistency; and (f) were original, peer-
reviewed articles published in English.

Exclusion Criteria 
Studies were excluded if they: (a) lacked a comparative control 
group; (b) involved only in vitro or animal models; (c) had 
no extractable quantitative data or insufficient information to 
compute hazard ratios and 95% confidence intervals; (d) were 
reviews, editorials, or conference abstracts; (e) focused on other 
HSPs rather than HSP70; or (f) investigated malignancies other 
than leukemia.

Literature Search Strategy
A comprehensive search was conducted across the following 
electronic databases: EBSCO, PubMed, ProQuest, ScienceDirect, 
and Scopus. The search strategy was carried out using the PICO 
framework: population (human participants with leukemia), 
intervention (expression levels of HSP70), comparison (healthy 
human controls), outcomes (HSP70 concentration data in ng/
mL and its potential role as a biomarker). In PubMed, Medical 
Subject Headings (MeSH) were applied, and CINAHL Headings 
were applied when searching the CINAHL database, following 
recommendations in the Cochrane Handbook for Systematic 
Reviews [52]. Keyword combinations with Boolean operators 
(AND/OR) were used to refine results. 
 
An example of a search string includes: (“HSP70” OR “HSP72” 
OR “Heat Shock Protein 70” OR “HSC70” OR “HSPA1A protein” 
OR “heat-shock response”) AND (“leukemia” OR “leukaemia” OR 
“ALL” OR “AML” OR “CML” OR “CLL”) AND (“expression” 
OR “concentration” OR “biomarker”) AND (“healthy controls” 
OR “normal controls”). Additionally, reference lists from included 
papers and relevant reviews were manually screened for other 
studies meeting the inclusion criteria [52].

Study Selection
All gathered studies were imported into EndNote 20 (Clarivate 
Analytics) for initial screening and duplicate removal, then 
exported into Rayyan (Qatar Computing Research Institute), for 
systematic screening [53]. Titles and abstracts were screened 
against the predefined eligibility criteria, and non-eligible 
studies were excluded.

As stated in section 2.2.1, only studies reporting HSP70 
expression in ng/mL, either as mean ± standard deviation (SD) or 
as median values that could be reliably converted, were included 
in the final analysis and proceeded to meta-analysis. Due to the 
very limited number of studies available on this topic, it was 
necessary to include those reporting medians. In such cases, 
when data were presented as median and interquartile range 
(IQR), or median and range, conversions to mean and SD were 
performed using the formulas described by Wan et al. (2014) 
[54]. Furthermore, as stated by Higgins and Li (2022) when 
multiple leukemia subtypes shared a single control group, the 
control sample size was divided approximately equally among 
intervention groups to prevent double counting and to preserve 
statistical independence between comparisons [52]. The entire 
study selection process was documented in a PRISMA 2009 flow 
diagram (Figure 5), detailing the number of records identified, 
screened, excluded, and included in the final analysis [51].
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Data Extraction
Extracted variables included: study ID (author name and 
publication year), country, leukemia subtype, sample sizes for 
patient and control groups, HSP70 expression levels in both 
groups, detection method (e.g., ELISA, Western blot), units 
of measurement (ng/mL), and statistical metrics (mean ± SD 
or converted values). Reported p-values or other indicators of 
statistical significance were also recorded.

Risk of Bias and Quality Assessment
A formal risk of bias assessment was not conducted due to the 
limited number of studies included in this meta-analysis. As 
outlined in the Cochrane Handbook for Systematic Reviews of 
Interventions, Higgins and Li (2022) recommend that methods 
such as Egger’s test and funnel plots are not recommended when 
fewer than ten studies are available, as they are underpowered 
and potentially misleading [52]. However, thorough steps were 
taken to minimise potential reporting bias, a comprehensive 
search was conducted across multiple databases, supplemented 
by manual screening of reference lists. Studies were included 
regardless of whether they reported statistically significant 
findings, and only those meeting the predefined methodological 
quality standards were retained.

Statistical Analysis
The meta-analysis was performed using IBM SPSS Statistics 
(version 28.0). Continuous outcome data were analysed using 
Cohen’s d to estimate the standardised mean differences 
(SMD) in HSP70 expression between leukemia patients and 
healthy controls, following the guidelines for interpretation 
proposed by Cohen (1988) [55]. Calculations were performed 
under a random-effects model, using the Restricted Maximum 
Likelihood (REML) method to estimate between study variance. 
The following input variables were used: sample sizes for both 
leukemia and control groups, mean and SD values for each 
group, and study ID for labelling.

Forest plots were generated to visually represent individual 
study effect sizes, their 95% confidence intervals, and the pooled 
effect estimate. Heterogeneity across studies was evaluated using 
Cochran’s Q (test for homogeneity), Tau-squared (τ²), H-squared 
(H²), and I² statistics. As outlined by Deeks et al. (2019), I² 
values between 0% and 40% indicate no/low heterogeneity, 
30% to 60% suggest moderate heterogeneity, 50% to 90% reflect 
substantial heterogeneity, and values between 75% and 100% 
are considered indicative of considerable heterogeneity [56]. 
As recommended by Kulinskaya et al. (2011), the homogeneity 
test was also applied to verify the consistency of effect sizes 
across studies. Statistical significance was determined using a 
two-sided p-value threshold of α = 0.05, whereby p < 0.05 was 
considered statistically significant [57].

Results
Study Selection and Characteristics
Following full text screening and data extraction, several studies 
were initially considered for inclusion in the meta-analysis. 

However, many were excluded due to incompatible data formats, 
inability to convert reported medians to mean ± standard 
deviation (SD) using Wan et al. (2014), use of inconsistent units, 
lack of a healthy control group, or incomplete statistical data 
[54].

Although the initial objective was to include all four major 
leukemia subtypes (AML, ALL, CML, and CLL), no eligible 
CLL studies met the inclusion criteria due to insufficient or 
incompatible reporting formats. Following screening, six 
studies were included in the qualitative synthesis. However, 
three could not be quantitatively pooled due to incomplete or 
non-comparable data, leaving three studies (four datasets) for 
the final meta-analysis. The selection process is summarised in 
the PRISMA flow chart (Figure 5).

Figure 5: PRISMA Flow Chart Summarising the Study Selection 
Process.

Out of 498 records identified, only three studies (four datasets) 
met all inclusion criteria for the meta-analysis. These final 
datasets investigated AML, ALL, and CML, and all reported 
HSP70 expression in ng/mL with matched healthy control 
groups.

In total, the included datasets encompassed 261 leukemia 
patients and 214 healthy controls. All studies quantified 
HSP70 protein levels using validated techniques (ELISA, 
electrochemiluminescence immunoassay, or whole-cell lysate 
kits) in peripheral blood samples, with results reported in ng/mL. 
Two datasets came from Yeh et al. (2008), investigating CML in 
the chronic phase (n = 93) and blast phase (n = 46), each with 
matched controls. Yeh et al. (2009) analysed ALL patients (n = 
40) versus controls (n = 99), while Fredly et al. (2012) studied 
AML patients (n = 82) versus controls (n = 20) [49,58,59]. Table 
2 presents the main characteristics of these studies, including 
year, country, leukemia subtype, sample sizes, HSP70 levels 
(mean ± SD), p-values, detection methods, and sample type.
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Table 2: Main Characteristics of the Studies Included in the Meta-Analysis.
All included datasets showed significantly elevated HSP70 expression in leukemia patients compared with matched healthy controls 
(p < 0.001) all cases). The fable summarises study details, including country, leukemia subtype, sample sizes, mean ± SD HSP70 
concentrations (ng/mL), detection methods, and sample types.

Study Year Country
Leukem 

is 
Subtype

Sample 
Size 

(Leukemi 
a)

Sample 
Size 

(Control)

HSP70 
Level 

(Leukemia) 
mean ± SD

HSP70 
Level 

(Control) 
mean ± SD

p value
Measurement 

Method
Sample 

Type

Yeh et 
al.

2008 United
States

CML 
(chronic 
phase)

93 47 38.34 ± 31.08 
ng/mL

4.93 ± 5.74 
ng/mL

p< 
0.001

Whole cell lysate 
kits

Peripheral
 blood

Yeh et 
al.

2008 United
States

CML 
(blast 
phase)

46 48 33.52 ±
27.55 ng/mL

4.93 ± 5.74 
ng/mL

p< 
0.001

Whole cell lysate 
kits

Peripheral
 blood

Yeh et 
al.

2009 United
States

ALL 40 99 47.47 ±
46.11 ng/mL

5.9 ± 4.39
ng/mL

p< 
0.0001

Electrochemilumi 
nescence 
immunoassay

Peripheral
blood

Fredly 
et al.

2012 Norway AML 82 20 2 ± 1
ng/mL

0.5 ± 0.25
ng/mL

p<
0.0001

EIA/
ELISA kits

Peripheral
blood

Meta-Analysis Findings
The meta-analysis was conducted using IBM SPSS (version 28). 
Figure 6 shows the forest plot, illustrating the individual and 
pooled effect sizes of HSP70 expression in leukemia patients 
compared to healthy control groups. As summarised in Table 3, 
the standardised mean differences (SMDs) were calculated for 
each included study. The overall pooled effect size was Cohen’s 
d = 1.498 (95% CI: 1.279 - 1.717, p < 0.001), indicating a 
statistically significant and large increase in HSP70 levels. 
According to Cohen’s guidelines, an effect size above 0.8 is 
considered large, indicating a substantial biological difference 
between patient and control groups [55].

All individual studies reported elevated HSP70 expression 
in leukemia compared with controls, with standardised mean 
differences (SMDs) consistently indicating large and statistically 
significant effects (Table 3). A confidence interval that lies 
entirely above zero indicates a statistically significant and 
consistently positive effect across studies [60]. In this analysis, 
the 95% CI (1.279 - 1.717) meets this criterion, confirming both 
the statistical significance and the positive direction of the effect. 
The narrow CI further indicates high precision in estimating 
the true effect size (Figure 7). Furthermore, the p-value of < 
0.001 underscores the reliability of this finding, indicating 
a probability of less than 0.1% that the observed difference 
occurred by chance. Collectively, these results strongly support 
the hypothesis that HSP70 overexpression is a consistent and 
biologically relevant feature of leukemia.

Table 3: Meta-Analysis Effect Size Estimates for HSP70 
Expression in Leukemia Compared with Controls

Effect Size Estimates

Effect 
Size

Std. 
Error Z Sig. 

(2-tailed)

95% Confidence 
Interval

Lower Upper
Overall 1. 0. 13. .000 1. 2.

All individual studies demonstrated large and statistically 
significant effect sizes (p < 0.001), with the pooled analysis 
indicating a robust and consistent upregulation of HSP70 in 
leukemia patients. The table presents Cohen’s d, 95% confidence 
intervals, p-values, and weights assigned to each study.

Figure 6: Meta-Analysis Forest Plot of HSP70 Expression in 
Leukemia Patients Compared with Controls

Each square represents an individual study’s effect size (Cohen’s 
d), with the horizontal line showing the 95% confidence interval. 
The size of the square indicates the study’s weight. The diamond 
at the bottom represents the overall pooled effect size and 
its confidence interval from the meta-analysis. All included 
studies showed statistically significant (p < 0.001)) results with 
moderate to large effect sizes.

Heterogeneity and Homogeneity Assessment
Heterogeneity was evaluated using Tau-squared (τ²), H-squared 
(H²), and I-squared (I²) statistics, and Cochran’s Q-test. The 
meta-analysis showed τ² = 0.00, H² = 1.00, and I² = 0.0%, 
indicating no between-study variance and complete consistency 
across the included datasets (Figure 7). Cochran’s Q-test for 
homogeneity (Q = 2.00, df = 3, p = 0.57) further confirmed the 
absence of significant heterogeneity, supporting the assumption 
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of homogeneity [46,60]. Collectively, these findings validate the 
use of a random-effects model and demonstrate robust agreement 
among studies.

Figure 7: Effect Size Summary with Heterogeneity and 
Homogeneity Testing Results.

This table displays the individual effect sizes (Cohen’s d), 
standard errors, 95% confidence intervals, p-values, and 
weights assigned to each study included in the meta-analysis. 
The overall pooled effect size was 1.498 with a standard error 
of 0.11, indicating a statistically significant increase in HSP70 
levels in leukemia patients (p < 0.001). Heterogeneity was 
moderate, with Tau² = 0.00, H² = 1.00, and I² = 0%, supporting 
the use of a random-effects model.

Discussion
The aim of this systematic review and meta-analysis was 
to evaluate HSP70 expression in individuals with leukemia 
compared to healthy controls, with the primary goal of assessing 
its potential as a diagnostic, prognostic, and therapeutic 
biomarker. It was hypothesised that HSP70 expression would be 
significantly elevated in leukemia patients. This hypothesis was 
strongly supported by the meta-analysis findings. The pooled 
analysis revealed a large effect size (Cohen’s d = 1.498, 95% CI: 
1.279 - 1.717, p < 0.001), confirming significantly higher HSP70 
expression in leukemia patients compared to healthy controls. 
The forest plot (Figure 6) visually reinforced these results, with 
all datasets showing elevated HSP70 levels. Additionally, in line 
with Cameron et al. (2021), the fact that the 95% confidence 
intervals for each dataset lie entirely above zero indicates that the 
observed effects are both statistically significant and consistently 
positive across studies, thereby reinforcing the reliability of 
the findings [60]. As shown in Figure 7, no heterogeneity was 
observed (I² = 0.0%), indicating complete consistency across 
studies. Furthermore, the homogeneity test produced a non-
significant result (Q = 2.00, p = 0.57), providing additional 
confirmation of the reliability and stability of the pooled findings 
[56]. Together, these outcomes offer quantitative confirmation 
that HSP70 is consistently dysregulated in leukemia, providing 
a foundation for considering it as a clinically relevant biomarker.

The findings of the present meta-analysis align strongly with 
individual results from the included studies. Yeh et al. (2008) and 
Yeh et al. (2009) each reported significant HSP70 upregulation 
in both ALL and CML, including in both the chronic and blast 
phases of CML [49,58]. Both studies proposed that HSP70 plays 
a cytoprotective role by stabilising oncoproteins and inhibiting 

caspase-mediated apoptosis, thereby enabling leukemia cells to 
resist oxidative and chemotherapeutic stress. Similarly, Fredly et 
al. (2012) observed significantly higher plasma concentrations 
of HSP70 in AML patients [59]. Additionally, as Steiner et al. 
(2006) reported, such consistent overexpression across subtypes 
may reflect a conserved adaptive mechanism: the high cellular 
turnover and metabolic demands of leukemia create a proteotoxic 
environment that necessitates increased chaperone activity to 
maintain protein homeostasis [61]. HSP70 mitigates protein 
aggregation and facilitates refolding of misfolded proteins, 
functions that leukemic cells may exploit to sustain survival, 
drive proliferation, and evade apoptosis [62].

In addition to the studies included in the meta-analysis, these 
findings also align with and extend a number of previous studies. 
For example, a study by Kondratiuk et al. (2020) evaluated 
serum HSP70 levels in children with ALL and reported a 
substantial difference between patients and healthy controls 
(median 5.51 ng/mL vs. 0.45 ng/mL, p = 0.000), highlighting 
the diagnostic potential of circulating HSP70 [63]. This was 
further supported by Guo et al. (2019), who demonstrated 
significantly elevated HSP70 expression in blood samples from 
ALL patients [50]. This study also showed that HSP70 inhibition 
in leukemic cell lines suppressed cell proliferation and promoted 
apoptosis, indicating both diagnostic and therapeutic relevance. 
Additionally, the present study’s hypothesis is further supported 
by findings from Li and Ge (2021), who reported significant 
upregulation of HSPA8 (HSP70) in AML patients compared to 
healthy controls, in fact, Li and Ge (2021) also found that higher 
HSPA8 expression was associated with reduced overall survival, 
reinforcing its potential prognostic value [64].

Although CLL was excluded from the meta-analysis due to 
incompatible reporting formats, Frezzato et al. (2016) also 
reported HSP70 overexpression in CLL, reinforcing the 
understanding that HSP70 dysregulation is a common molecular 
feature across leukemias [48]. Collectively, these findings 
provide compelling evidence that HSP70 is consistently 
overexpressed in leukemia, supporting its potential use as a 
biomarker for detection, prognosis, and therapeutic targeting.

Diagnostic Biomarker Potential of HSP70 in Leukemia
Leukemia diagnosis typically relies on bone marrow biopsy 
and cytogenetic or molecular testing. While effective, these 
procedures are invasive and can pose challenges for routine 
follow-up and long-term monitoring [65]. Consequently, as 
highlighted by Chanteloup et al. (2020) and Werner et al. (2021), 
there is growing interest in minimally invasive, blood-based 
biomarkers [66,67]. The present meta-analysis strengthens 
the case for HSP70 in this role, demonstrating its consistent 
overexpression in patient samples across leukemia subtypes. 
Extracellular HSP70, either in soluble form or packaged within 
extracellular vesicles (EVs), is detectable in circulation and 
reflects tumour biology [68,69].

Several studies support this utility. Madden et al. (2012) showed 
that HSP72 expression in PBMCs from CLL and chronic 
myelomonocytic leukemia (CMML) patients was 4-6 fold 
higher than in healthy individuals, with a substantial proportion 
localised to the cell surface (65% in CLL lymphocytes, 80% 
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in CLL monocytes) [70]. Similar findings were reported by 
Raimondo et al. (2015) and Szczepanski et al. (2020), who 
demonstrated that circulating HSP70 reliably distinguishes 
leukemia patients from controls. Importantly, Bayer et al. 
(2014) provided preclinical evidence that soluble HSP70 levels 
correlate with tumour burden and treatment response in vivo 
[72]. In mouse models, sHSP70 levels rose in proportion to 
tumour volume and declined after radiation therapy, returning 
to baseline upon remission. Although not leukemia-specific, 
these findings suggest that soluble HSP70 may function as both 
a diagnostic marker and a non-invasive indicator of treatment 
response, supporting the broader concept that extracellular 
HSP70 reflects disease burden.
 
Exosomal HSP70 further strengthens this potential. Gobbo et al. 
(2015) demonstrated that tumour-derived exosomes are enriched 
with membrane-bound HSP70, with cancer patients showing 
markedly higher plasma levels of HSP70-positive exosomes 
compared to healthy donors (mean ± SD: 3.5 ± 1.7 ng/mL vs. 
0.17 ± 0.11 ng/mL, p = 0.004) [72]. Although this study focused 
on solid tumours, it underscores the tumour-specific enrichment 
and stability of exosomal HSP70 in circulation. Consistent with 
this, Georgievski et al. (2022) reported that ~40% of EVs from 
leukemic cells carried HSP70, whereas none were detected in 
controls, and these HSP70-positive EVs impaired hematopoietic 
stem cell function, highlighting both their biological relevance 
and diagnostic potential [73]. Collectively, these findings 
indicate that circulating HSP70, especially in its exosomal 
form, holds strong promise as a clinically relevant, minimally 
invasive biomarker for leukemia diagnosis and ongoing disease 
surveillance. Its detectability in blood, association with disease 
burden, and stability within EVs further underscore its potential 
for integration into future biomarker panels and validation 
through prospective clinical studies [21].

Prognostic Biomarker Potential of HSP70 in Leukemia
Considering the consistent overexpression of HSP70 observed in 
this study, and in line with numerous previous investigations, its 
potential prognostic significance in leukemia has been extensively 
examined, with reported associations between elevated HSP70 
expression and key clinical outcomes including treatment response, 
complete remission (CR) rates, and overall survival [74-76,27]. 
Emerging evidence indicates that elevated HSP70 expression is 
associated with poorer prognosis, potentially by enabling leukemic 
cells to evade apoptosis, sustain uncontrolled proliferation, and 
resist chemotherapeutic stress. For example, in a cohort of patients 
with AML, Steiner et al. (2006) reported that high membrane 
expression of HSP70 on leukemic cells was significantly correlated 
with inferior prognosis [76]. The authors highlighted that HSP70 
overexpression on the cell surface may facilitate immune evasion 
and enhance cellular survival mechanisms, thereby contributing to 
adverse clinical outcomes. This provides direct clinical evidence 
of the prognostic impact of HSP70 and reinforces its potential role 
as a negative biomarker in AML. 
 
Similarly, Piszcz et al. (2014) evaluated serum anti-HSP70 
antibodies and HSP70 antigen levels in 80 AML patients, 
reporting significantly higher antibody concentrations in patients 
compared to controls (354.62 ± 21.3 pg/mL vs. 247.59 ± 16.04 
pg/mL, p = 0.007) [75]. In fact, this study also determined that 

patients with higher HSP70 antigen levels and lower antibody 
titres had significantly shorter overall survival. In contrast, 
patients with elevated anti-HSP70 antibody concentrations 
experienced longer survival outcomes, suggesting that a 
protective antibody response against HSP70 may offer some 
extent of clinical benefit. These findings indicate that both 
intracellular overexpression and immune response to HSP70 
may contribute to disease progression and prognostic variability. 
Further supporting these observations, Frezzato et al. (2016) 
examined HSP70 and its transcriptional regulator HSF1 in CLL 
and found that both were significantly overexpressed in leukemic 
cells compared to controls [48]. Importantly, this overexpression 
was associated with markers of poor prognosis, implying that 
the HSP70/HSF1 axis plays a functional role in supporting 
neoplastic cell viability. These findings reinforce the relevance 
of HSP70 dysregulation in leukemia not only at a molecular level 
but also in terms of its clinical implications, including resistance 
to apoptosis and treatment failure [77,78]. In addition, Chalmin 
et al. (2010) found that HSP70 within tumourderived exosomes 
activates STAT3 signalling in myeloid-derived suppressor cells 
(MDSCs), promoting their expansion and impairing immune 
surveillance [79]. Although the study focused on solid tumours, 
MDSC-mediated immunosuppression is also recognised in 
leukemia, as demonstrated by Giallongo et al. (2015), suggesting 
that exosomal HSP70-driven immune evasion may contribute to 
poorer prognosis in haematologic malignancies [80].

Comparable findings were reported by Thomas et al. (2005), 
who investigated the prognostic value of HSP70 in AML patients 
and observed that individuals with low HSP70 expression 
had significantly higher CR rates and longer median overall 
survival compared to those with high expression [27]. This 
inverse relationship between HSP70 levels and patient outcomes 
supports its value as a prognostic marker.
 
Nevertheless, the collective evidence strongly supports the 
prognostic significance of HSP70 across multiple leukemia 
subtypes. Consistent overexpression appears mechanistically 
linked to poorer clinical outcomes through anti-apoptotic, pro-
survival, and immune-modulatory functions. This reinforces 
HSP70’s potential as a negative prognostic biomarker and 
underscores the need for further studies to evaluate its predictive 
value for treatment response and disease progression [76-78].

Therapeutic Potential of HSP70 Inhibition 
The strong overexpression of HSP70 demonstrated in this 
meta-analysis, together with its wellestablished cytoprotective 
functions, positions it as a compelling therapeutic target. 
Preclinical studies consistently show that HSP70 inhibition 
disrupts leukemic survival by restoring apoptosis and 
destabilising oncogenic proteins [46,62]. These findings align 
with the present meta-analysis, which confirmed significantly 
elevated HSP70 expression in leukemia patients compared 
to controls. Accordingly, substantial efforts have focused on 
developing HSP70-targeted strategies, including small-molecule 
inhibitors and siRNA-based approaches, many of which show 
promising antileukemic activity in preclinical models [80,46].

A central justification for HSP70 inhibition is its role in drug 
resistance [82,30,83]. For example, Pocaly et al. (2006) 
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demonstrated that imatinib-resistant CML cell lines exhibited 
threefold higher HSP70 expression than sensitive counterparts, 
while siRNA knockdown restored drug sensitivity and reduced 
cell viability [28]. Similarly, blast cells from resistant patients 
displayed elevated HSP70, underscoring its clinical relevance. 
Complementary studies have shown that inhibitors such as 
MKT-077 and S1g-6 display greater potency in CML cells than 
in normal controls, suggesting that direct HSP70 targeting can 
impair leukemic cell survival and overcome resistance [84-86].

Additionally, similar findings have been reported in AML, 
where HSP70 inhibition has shown therapeutic promise. 
Reikvam et al. (2013) demonstrated that the HSP70 inhibitor 
VER-155008 reduced proliferation and induced apoptosis in 
primary AML cells, while Sharma et al. (2012) also highlighted 
its antileukemic activity [87]. Additionally, combining HSP70 
and HSP90 inhibition produced additive effects, reinforcing the 
therapeutic relevance of dual chaperone targeting across both 
myeloid and lymphoid leukemias [88,80,46]. These consistent 
synergy findings strengthen the rationale for combination 
strategies, further supported by studies of chaperone-based 
chemotherapy approaches [89,90].

Pifithrin-μ (PFT-μ), a selective HSP70 inhibitor, has been 
extensively studied and exhibits potent antileukemic activity. 
Kaiser et al. (2010;2011) demonstrated that PFT-μ reduced 
viability in AML and ALL cells while sparing normal 
hematopoietic cells [88, 46]. Mechanistically, it induced cell 
cycle arrest, activated caspase-3, and reduced AKT and ERK1/2 
signalling. Importantly, PFT-μ enhanced the activity of standard 
chemotherapeutics such as cytarabine and sorafenib, as well as 
HSP90 inhibitors like 17-AAG, with dual blockade producing 
synergistic reductions in viability. These findings are supported 
by subsequent work showing enhanced cytotoxicity when PFT-μ 
is combined with additional agents [91].

Another promising HSP70 inhibitor is QL47, a novel small 
molecule that covalently binds to the nucleotide binding domain 
of inducible HSP70. Hu et al. (2021) demonstrated that QL47 
degraded FLT3-ITD protein via proteasome-mediated pathways 
and disrupted STAT5-MYC signalling in FLT3-ITD-positive 
AML [43]. QL47 also overcame midostaurin resistance and 
reduced leukemic burden in murine models, highlighting 
its ability to target genetically defined leukemia subsets. 
Additionally, Methylene blue (MB), which inhibits HSP70 
ATPase activity also showed activity in preclinical models, 
for example, Soans et al. (2014) reported that MB suppressed 
proliferation and induced apoptosis in B-ALL while inhibiting 
the E2A transcription factor, an important regulator of B-cell 
development, suggesting a dual-targeted therapeutic approach 
[92].
 
Beyond pharmacological inhibition, gene-silencing approaches 
provide further support. Guo et al. (2019) demonstrated that 
siRNA-mediated knockdown of HSP70 in ALL cell lines 
significantly increased apoptosis and reduced proliferation 
through downregulation of the TAK1/Egr-1 pathway [50]. This 
finding reinforces the link between HSP70 and prosurvival 
signalling, validating its therapeutic relevance. Similarly, 
immunotherapeutic strategies have also been explored, for 
example Jimbo et al. (2008) showed that immunisation with 

leukemia-derived HSP70 induced strong antibody responses 
with complement-dependent cytotoxicity, while Sato et al. 
(2001) reported that HSP-peptide complex vaccination induced 
antileukemic immunity in murine models [93].

Mechanistic studies further clarify HSP70’s role in leukemic 
persistence. By stabilising RAF and AKT, it sustains RAS/RAF/
MEK/ERK and PI3K/AKT/mTOR signalling, while impairing 
p53mediated apoptosis through MDM2 interactions [95,96]. In 
CLL, HSP70 stabilises Tcl1, thereby enhancing AKT activation, 
while inhibition with myricetin degrades Tcl1 and impairs 
leukemic survival [97]. These mechanisms explain both the 
overexpression patterns observed in this meta-analysis and their 
association with poor prognosis and therapeutic resistance.

Despite this compelling body of preclinical evidence, no 
HSP70-targeted therapy has yet reached clinical approval, 
reflecting challenges such as isoform selectivity, toxicity, 
poor pharmacokinetics, and compensatory induction of other 
heat shock proteins [98,99]. Nonetheless, the consistent 
overexpression demonstrated in this meta-analysis, together 
with the broad preclinical evidence base, underscores HSP70’s 
translational potential. Rational combination strategies, 
particularly with tyrosine kinase inhibitors, chemotherapeutics, 
or immunotherapies, may prove more effective than monotherapy 
[100,45]. Biomarker-guided clinical trials will be critical to 
determine whether HSP70 inhibition can be translated into a 
viable therapeutic approach in leukemia.

Limitations and Future Direction
This meta-analysis provides strong evidence for consistent 
HSP70 overexpression in leukemia, but several limitations must 
be acknowledged. The number of eligible studies was small, 
with most published between 2008 and 2012, highlighting a 
lack of recent data and limiting the ability to perform subgroup 
analyses. Conversion of some datasets from median to mean 
may also introduce minor uncertainty [54]. In addition, CLL data 
were excluded due to incompatible reporting formats, restricting 
generalisability across all subtypes. Most therapeutic evidence 
remains confined to preclinical models, with clinical validation 
of HSP70 inhibitors still lacking [101]. Future research should 
therefore focus on large, well-designed studies across all 
leukemia subtypes using standardised reporting. Prospective 
clinical trials are needed to evaluate the safety and efficacy of 
HSP70-targeted therapies, particularly in rational combinations 
with existing treatments. Moreover, circulating and exosome-
associated HSP70 require further investigation as non-invasive 
biomarkers for diagnosis and disease monitoring [66,102].

Conclusion
This study demonstrates that HSP70 expression is significantly 
upregulated in leukemia patients compared with healthy 
individuals. Overexpression is consistently associated with 
poorer survival and adverse prognosis across subtypes, 
supported by mechanistic and preclinical evidence highlighting 
HSP70’s role in leukemogenesis, disease progression, and 
therapeutic resistance. These findings position HSP70 as a 
promising diagnostic, prognostic, and therapeutic biomarker 
in leukemia. However, the lack of recent clinical data and the 
small number of eligible studies underscore the need for future 
large-scale investigations, especially those using standardised 
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methodologies, alongside mechanistic studies and clinical trials 
to validate HSP70’s clinical use. Understanding the precise 
biological functions of HSP70 in leukemia may also contribute 
to the development of novel, targeted treatment strategies. 
Overall, this study provides a foundation for prioritising HSP70 
as a clinically relevant biomarker and therapeutic target in future 
leukemia research.
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