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ABSTRACT
This paper presents a comprehensive analysis and design approach for a third-order linear timeinvariant (LTI) dynamic system using 
the state-space framework. Key contributions include deriving transfer functions from state-space representations, verifying system 
stability through eigenvalue and Lyapunov-based analysis, assessing system controllability and observability, and implementing canonical 
realizations. Advanced control strategies such as state feedback via pole placement and observer design are applied using MATLAB. 
Simulation results confirm system stability and tracking accuracy. 
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Introduction 
The state-space approach offers a powerful and systematic 
method for modeling, analyzing, and designing control systems. 
Unlike classical methods based on transfer functions, state-
space representation provides the flexibility to handle multi-
input multi-output (MIMO) systems, timevarying systems, and 
initial conditions directly. This paper focuses on the analysis and 
controller design of a third-order LTI system using state-space 
tools. The primary goals include verifying stability, checking 
system controllability and observability, and implementing a 
full-state feedback controller and observer. 
 
In the field of modern control engineering, the ability to 
understand and manipulate system dynamics is vital for 
achieving desired performance and robustness. Classical control 
approaches rely heavily on transfer functions, which, although 
effective for single-input single-output (SISO) systems, lack 
generality when dealing with complex, multi-variable systems. 
State-space analysis, on the other hand, offers a versatile 
framework where internal system states are explicitly modeled, 

allowing for more in-depth understanding of system dynamics 
and enabling advanced control strategies. 
 
The shift toward state-space techniques has been particularly 
significant in areas such as aerospace, robotics, power systems, 
and process control. These fields often involve systems with 
multiple interacting variables and stringent requirements on 
stability, response time, and energy efficiency. By representing a 
system in terms of its state variables, we can design controllers 
that directly manipulate internal states, resulting in improved 
control accuracy and dynamic performance. 

This paper aims to demonstrate how MATLAB-based tools can 
be leveraged to analyze the structural properties of a dynamic 
system, evaluate its stability using both analytical and numerical 
techniques, and implement effective state feedback and observer 
controllers. Each phase of the system analysis and design process 
is grounded in theory but verified through simulation, ensuring 
both academic rigor and practical relevance. 

Ultimately, this work serves as a step-by-step guide to employing 
state-space methods for control design. It integrates fundamental 
concepts such as controllability, observability, and canonical 
realizations with practical controller synthesis to address real-
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world engineering problems. The provided examples and results 
highlight the value of modern control techniques in the age of 
automation and digital design. 

System
The state space matrices of the system under consideration are 
as follows

1 0 0 23.8268 5.1395 3.4960
0 1 0 00150 30.1122 .8091
0 0 1 0.0732 112.4109 108.3716

B A
− −   

   = = − −   
   − − −   

[ ] [ ]1 0 0 0 0 0C D= =

Determining the conversion function 
 To obtain the system transformation function for each input, we 
use thess2tf command. 

[n1, d1] =ss2tf (a, b, c, d,1);
g1=tf (n1, d1); 

s^2 + 138.5 s + 3354

g1= ------------------------------------
s^3 + 162.3 s^2 + 6654 s + 7.991e004

We can also obtain the conversion function between the output 
and the selected input for the other two inputs .

Sustainability review
To check the stability of the system, we obtain the eigenvalues of 
the matrix A. To obtain the eigenvalues, we use the eig command.

eig(a)
answer =
-23.8227
-31.2923
-107.1956
Since all the eigenvalues of matrix A are on the left side of the jw 
axis , the system is therefore stable.

Plotting unit shock and unit step responses and analyzing 
stability and permanent error
The step response of each transfer function is plotted in the 
figure below: 

Figure 1: Step response

Figure 2: Impulse response in all three transfer functions

Obtaining the Rise, Delay, Landing and Maximum Jump Times 
as Well as the Maximum Jump Percentage 
 use the stepinfo command rise, delay, settle, and to obtain 
system specifications such as maximum jump times, as well as 
the maximum jump percentage. 
info_g1 = 
  
RiseTime: 0.0922 
SettlingTime: 0.1642 
SettlingMin: 0.0378 
SettlingMax: 0.0420 
Overshoot: 0 
Undershoot: 0 
Peak: 0.0420 
PeakTime: 0.3281 
  
  
info_g2 = 
  
RiseTime: 0.0973 
SettlingTime: 0.1766 
SettlingMin: 0.0019 
SettlingMax: 0.0021 
Overshoot: 0 
Undershoot: 0 
Peak: 0.0021 
PeakTime: 0.3281 
  
  
info_g3 = 
  
RiseTime: 0.0961 
SettlingTime: 0.1748 
SettlingMin: 0.0012 
SettlingMax: 0.0014 
Overshoot: 0 
Undershoot: 0 
Peak: 0.0014 
PeakTime: 0.3175  

Checking Controllability and Visibility
To check controllability, we first create the controllability matrix 
using the ctrb command, and if the rank of the matrix is complete, 
it indicates the controllability of the system. 

ctrb_matrix=rank(ctrb(a,b)) 
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1.0e+004 * 
  
0.0001 0 0 -0.0024 0.0005 0.0003 0.0568 -0.0670 -0.0458 0 
0.0001 0 0.0000 -0.0030 0.0001 -0.0001 0.0816 -0.0112 
0 0 -0.0001 -0.0000 0.0112 0.0108 0.0011 -1.5567 -1.1654 
 
ctrb_matrix =3 

The rank of the matrix is 3 instead of 9, so the system is not 
controllable 
And similarly, to check visibility, we first create the visibility 
matrix using theobsv command, and if the rank. of the matrix is 
complete, the system is visible 

obsv_matrix=rank(obsv(a,c)) 
answer = 
  
1.0000 0 0 
-23.8268 5.1395 -3.4960 
568.0494 -670.2080 458.0072 
 
obsv_matrix =3 
 
By considering one input, for example the first input, and 
checking the controllability condition, we will have 
answer = 
  
1.0000 0 0 
-23.8268 5.1395 -3.4960 
568.0494 -670.2080 458.0072 
 
rank(ans) answer = 3 
So. the system is stable, controllable, and observable for only 
the first input, 

Investigating Stability in the Lyapunov Sense - 7 
Input-output stability:
The purpose of this stability is to ensure that the output remains 
limited for a limited. range of input.

To demonstrate this, we applied a step input to the system 
and observed the output. As seen in Figure 1, the output range 
remains limited.

Stability in the sense of Lyapunov:
In this stability, for initial conditions and no input, the output 
must converge to zero. Considering the controller canonical and 
for zero input and initial conditions [2,3,.4], the output states are 
as follows. 

Figure 3: Block diagram for checking Lyapunov stability

As can be seen in Figure 4, the states have converged towards 
zero for zero input and initial. conditions, so the system is stable 
in the Lyapunov sense.

Figure 4: Output states for zero input and initial conditions

Realizations -8
Fulfillment Canonical Seer

[ ]
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1 1

2 2

0 0
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−   
  = − =   

   −   
=



In this case, the derivative of the states is as follows.

1 0 3 0

2 1 1 3

3 2 2 4

x a x b u
x x a x
x x a x

= − +

= −
= −







Considering the transformation functiong, we have the following

s^2 + 138.5 s + 3354
g= -----------------------
s^3 + 7 s^2 + 15 s + 25

Block diagram Implementation Canonical Seer
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Figure 6: Output of states in Canonical Seer 

Realization
Canonical controller realization
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Block diagram Implementation Canonical Controller 

Figure 8: Output of states in Controller Canonical 

Realization
Canonical realization of controllability 
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are the Markov parameters βi where.

β3 = h1 , β2 = h2 , β1 = h3

hi obtain to We use the following relationship.

h1=c*b =0;
h2=c*a*b=0;
h3=c*a^2*b=45;

Implementation block diagram Canonical controllability

Figure 10: Output of states in controllability Canonical 

Realization
Canonical realization of visibility 
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block diagram Implementation Canonical visibility

Figure 12: Output of states in visibility Canonical 

Realization
Mode Feedback Controller -9 
Considering that for the design of the state feedback controller, 
the system must be controllable and observable, and as it was 
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observed, the system is not controllable for all 3 inputs, but for 
one input, for example, the first input, it was observed that the 
system is stable. We design the state feedback controller for the 
first input. We want the poles. It should be as follows 

[-1+2*i -1-2*i -5] 

The desired system has two dominant poles and one pole at -5, 
which, due to its distance, has no. effect on the dominant poles. 

To obtain the gain matrixk, we use the place. command 
a= [0 1 0; 0 0 1; -25 -15 -7]; b= [0;0;1]; c= [3354 138.5 1]; d=0; 

k=place (a,b, [-1+2*i -1-2*i -5]); 
 
For initial conditions of zero and step reference input, we want 
the controller to drive the system. output to one. The realization 
is as follows 

Figure 13: Block diagram of the state feedback controller. 

The response form of the states and output is as follows 

Figure 14: System output response (without initial conditions)

Figure 15: Output states in a state feedback controller (without 
initial conditions)

The shape of the states and output with the following initial 
conditions are specified in Figures and 17, 16 
 
x0= [2;3;.4] 

Figure 16: State output in a state feedback controller (with 
initial conditions)

Figure 17: System output response (with initial conditions) 
 
Design of the Pole-viewer Location Controller -10 
To design the pole locating controller, we assume that the desired 
poles of the system are like the pole section and we place the 
observer poles at the points [-2 -3 -10]. 

For realization, we use controller realization. In this case, the 
matricesa, b, c, d. are as follows 
 
a= [0 1 0; 0 0 1; -25 -15 -7]; b= [0;0;1]; c= [3354 138.5 1]; d=0; 
k=place (a,b, [-1+2*i -1-2*i -5]); l=place (a',c’, [-2 -3 -10])'; 

Figure 18: Block diagram of state feedback control with 
observer 

The output result can be seen in Figure 19 
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Figure 19: System output result 

The system output response along with the observer output is 
shown in Figure 20 

Figure 20: Output result with viewer   

Conclusion 
This paper presented a detailed study of a third-order LTI system 
using state-space methods. From modeling to simulation, and 
through canonical transformations to advanced controller 
design, all steps were implemented and validated in MATLAB. 
The system's controllability, observability, and stability were 
analyzed both theoretically and through simulations. The 
combination of state feedback and observer design successfully 
ensured robust control and estimation. 
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