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ABSTRACT
Rice yield is significantly influenced by climatic variability, water availability, and agronomic practices. Effective monitoring of paddy 
growth and yield assessment is essential to ensure food security. This study aimed to monitor rice crop growth and predict yield in the 
Batticaloa District, Sri Lanka, using remote sensing and Geographic Information Systems (GIS). The analysis focused on the Yala season 
due to frequent cloud cover during the Maha season. Sentinel-2 Level-2A imagery from the 2023 and 2024 Yala seasons was utilized 
to derive the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Red-edge index for 
assessing crop health and stress variations. Paddy cultivation areas were delineated through supervised classification of satellite images, 
supported by ground truth data collected via field surveys and farmer interviews. The relationships between vegetation indices and yield 
were examined using regression models. Multi-temporal analysis of NDVI, NDWI, and Red-edge indices revealed a distinct pattern, with 
peak values occurring approximately eight weeks after planting. The NDVI-based yield prediction model achieved an R² of 0.70, while 
the Red-edge model yielded an R² of 0.69, demonstrating strong correlations between vegetation indices and yield. Predicted yields for 
the 2024 Yala season were approximately 5046 kg/ha (NDVI) and 5005 kg/ha (Red-edge), compared to the observed yield of 4497 kg/
ha. The Root Mean Square Error (RMSE) values for the NDVI and Red-edge models were 12.21% and 11.29%, respectively. These 
results highlight the effectiveness of remote sensing and GIS in monitoring rice growth and estimating yield, and underscore the potential 
of integrating such approaches with advanced technologies to promote precision agriculture in Sri Lanka. Future studies should aim to 
improve prediction accuracy using higher-resolution imagery, enhanced ground truth datasets, and machine learning techniques.
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Introduction
Rice is a staple food for over half of the world's population, 
particularly in Asia, where it serves as a primary source of 
nutrition and livelihood for millions [1]. In Sri Lanka, rice 
cultivation plays a vital role in ensuring food security and 
supporting rural economies, with approximately 29% of the 
total cultivated land allocated to paddy farming [2]. The two 
main cropping seasons, Maha (October–February) and Yala 

(April–September), depend on monsoonal rainfall and irrigation 
schemes [3]. However, rice production faces multiple challenges, 
including climate variability, water stress, pest infestations, and 
inefficient resource management. Timely monitoring of crop 
health and yield estimation is essential for efficient agricultural 
planning, early warning systems, and food security [4].

Estimating crop area extent is crucial for accurate yield 
predictions and agricultural resource planning. Traditional field-
based methods, such as manual surveys and visual inspections, 
are time-consuming, labour-intensive, and limited in spatial 
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coverage. As a result, there is an increasing need for advanced 
technologies to support agricultural decision-making and to 
optimize farm and field management [5]. 

Recent advancements in remote sensing and Geographic 
Information Systems (GIS) have revolutionized crop monitoring 
and yield prediction by providing large-scale, real-time, and 
cost-effective solutions [6]. Satellite imagery enables continuous 
observation of crop health, stress conditions, and biomass 
accumulation, thereby reducing dependence on field surveys 
[67-9]. Several Earth Observation (EO) satellites, including 
Sentinel-2, SPOT, Landsat, and MODIS, offer multispectral data 
that can be used for vegetation monitoring and yield forecasting.

By utilizing indices such as the Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Water Index (NDWI), 
and Red-Edge Vegetation Index, important growth factors such 
as plant vigour, water stress, and chlorophyll content, which are 
key indicators of crop health and productivity. Several studies 
have demonstrated the effectiveness of satellite-based crop 
monitoring and yield estimation models. For example, Xiao et al., 
(2002) developed a rice mapping model using MODIS-derived 
vegetation indices, while Setiyono et al. combined MODIS, 
Sentinel-1 SAR, and the ORYZA crop growth model to improve 
yield predictions [10-14]. In Sri Lanka, Bandara highlighted the 
potential of remote sensing in monitoring irrigation performance 
and paddy health, and Gunapala et al. successfully applied 
NDVI-based models for paddy yield estimation [15,16].

In Sri Lanka, where rice cultivation plays a crucial role in 
national food security, leveraging remote sensing techniques can 
enhance yield predictions and resource management strategies, 
particularly in regions like Batticaloa, which is one of the major 
paddy-producing areas. The ability to assess spatial and temporal 
variations in crop health using remote sensing data is essential 
for ensuring sustainable paddy production and strengthening 
climate-resilient agricultural practices.

The growing challenges in paddy cultivation due to climate 
variability, water scarcity, and inefficient resource utilization 
necessitate the adoption of advanced technologies for effective 
crop monitoring and yield assessment. Traditional field-based 
monitoring methods are not scalable, making them unsuitable 
for large-area agricultural management. 

Efficient agricultural planning and food security strategies 
require real-time crop monitoring to detect stress conditions 
early. Satellite remote sensing provides a non-destructive, cost-
effective, and scalable solution for tracking paddy crop health 
across large areas. Predicting paddy yield with high accuracy 
is essential for market planning, resource allocation, and food 
security assessments [17]. This study integrates NDVI, NDWI, 
and Red-Edge Indices to monitor crop growth throughout the 
season and analyze their relationship with yield. The use of 
multi-temporal satellite imagery helps in identifying crop 
growth patterns, stress conditions, and water availability. Since 
Sentinel-2 provides medium-resolution multispectral data, it 
enables improved biophysical parameter estimation, which is 
critical for precision agriculture [18].

While remote sensing applications in rice monitoring have been 
widely studied in other regions, limited research has focused 
on Sri Lanka, particularly in Batticaloa.  This research will 
contribute to localized methodologies for using remote sensing 
and GIS for paddy yield prediction.

The findings of this study will provide valuable insights for 
farmers, policymakers, and agricultural planners by offering 
timely crop health assessments to support better irrigation and 
fertilizer management, scalable and cost-effective methods for 
large-area yield estimation, integration of remote sensing with 
ground truth validation for enhanced precision agricultural 
practice. By applying remote sensing techniques, this study aims 
to provide scientifically validated solutions to improve rice yield 
estimation, ultimately contributing to Sri Lanka’s agricultural 
sustainability and food security efforts.

In many developing countries, including Sri Lanka, agricultural 
management often operates in data-poor environments, where 
accurate and timely field-level information on crop growth, 
yield, and management practices is scarce due to limited 
financial, technical, and institutional resources [19]. In such 
contexts, remote sensing–based yield prediction models are 
particularly valuable because they provide spatially continuous, 
objective, and repeatable information over large agricultural 
areas, overcoming the limitations of fragmented or outdated 
ground data [17,19]. These satellite-derived predictions help 
bridge critical data gaps, enabling early warning of production 
shortfalls, improving agricultural planning, and supporting 
decision-making for food security and disaster preparedness 
[4,6]. Moreover, by integrating remote sensing with Geographic 
Information Systems (GIS), policymakers and farmers can 
generate near-real-time insights on crop health and stress 
conditions even in regions lacking dense observation networks, 
thereby enhancing the resilience and efficiency of agricultural 
systems under data constraints [5].

Materials and Methods
Study Area
The study was conducted in the Batticaloa District (Agro-
ecological region: DL2b), Eastern Province of Sri Lanka, one 
of the major rice-producing regions characterized by a tropical 
monsoonal climate. 

The district experiences two primary growing seasons;
•	 Maha (October–February): Dominated by the Northeast 

monsoon, providing ample rainfall for paddy cultivation.
•	 Yala (April–September): Relies mainly on irrigation 

schemes due to low rainfall. 
The region consists of lowland paddy fields, rivers, and irrigated 
agricultural zones with varying soil types, predominantly 
alluvial soils in the paddy fields, which are well-suited for rice 
cultivation. a 3.5-month paddy variety, is the dominant cultivar 
grown in the area. Most farmers practice broadcasting, while 
transplanting is less common. Land preparation typically begins 
in the second week of March for Yala season cultivation. Planting 
and cultivation dates are determined during farmer organization 
decision making meetings (Pre and during the season meetings). 
This study focuses on selected paddy-growing areas within the 
Batticaloa District during the Yala season.
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Data Collection
Data collection includes field-based ground truth data, and 
secondary datasets from government and research institutions 
and satellite imagery.

Satellite Data Acquisition
To monitor rice growth, Sentinel-2 Level-2A images were used 
due to their high spatial, spectral, and temporal resolution. Four 
time-period images were collected for analysis during 2023 and 
three time-period images were collected for 2024 Yala seasons to 
capture different crop growth stages.  The study was restricted to 
Yala season due to heavy cloud coverage in Maha season which 
does not facilitate the use of satellite imagery. The selection 
criteria included:

•	 Cloud cover <15% to ensure clear images.
•	 Availability of multi-temporal images to analyze crop 

growth stages 

Table 1: Details of satellite images used for the analysis

Year Season Acquisition 
Date Sensor

Cloud 
cover 

%

Paddy 
Growth 
Stage

2023 Yala 2023.04.17 MSI 0.1% Seedling 
stage

2023 Yala 2023.05.27 MSI 0.7% Tillering 
stage

2023 Yala 2023.06.11 MSI 0.0%
Panicle 

initiation 
stage

2023 Yala 2023.07.16 MSI 11.8% Heading 
stage

2024 Yala 2024.05.06 MSI 11% Tillering 
stage

2024 Yala 2024.06.10 MSI 14%
Panicle 

initiation 
stage

2024 Yala 2024.07.10 MSI 10.38% Heading 
Stage

Land Use Classification and Paddy Area Extraction
Image acquired two weeks after planting was used to identify 
the paddy cultivated areas, as it clearly differentiates paddy 
fields from other vegetation; at this early stage, the fields contain 
water, making them distinguishable. Supervised classification 
was applied to classify the image. Subsequently, a masking 
technique was applied to the classified image to isolate and 
extract paddy field pixels based on their spectral and spatial 
characteristics. This process effectively filtered out non-paddy 
land cover classes, resulting in a refined layer representing 
paddy fields. Finally, extracted paddy field layer was processed 
to generate a Paddy Base Map, which served as the foundation 
for subsequent spatial analyses and investigations.

Computation of vegetation Indices
In order to quantitatively assess vegetation dynamics and water 
content within the study area, a suite of indices was computed 
utilizing Sentinel-2 satellite imagery. The Normalized Difference 
Vegetation Index (NDVI) was calculated using the Equation 

NDVI= (NIR-Red)/(NIR+Red). 

This index served to measure plant vigour and overall crop 
health, providing insights into the photosynthetic activity and 
biomass of the vegetation.

Furthermore, the Normalized Difference Water Index (NDWI) 
was derived using the Equation 

NDWI = (Green-NIR)/(Green+NIR)

This index aimed to identify and quantify water content within 
the field and vegetation canopy, reflecting the moisture status of 
the surface and plants.

Finally, the Red-Edge Index, a proxy for vegetation stress, was 
calculated using the Equation Red-Edge Index = (RE3-RE1)/
(RE3+RE1)

Where RE3 corresponds to Red-edge band 3 and RE1 to Red 
edge band 1of Sentinel 2. This index was employed to detect 
crop stress, early drought conditions, and potential disease 
occurrences, leveraging the sensitivity of red-edge spectral 
regions to changes in plant physiology. These three indices were 
computed for each Sentinel-2 image for subsequent temporal 
analysis of vegetation characteristics.
 
Selection of Random Sampling Points
To analyze the temporal dynamics of vegetation indices within 
the paddy fields, a spatially representative sampling strategy 
was employed. Specifically, 100 random points were generated 
and distributed within the delineated paddy field boundaries. 
Subsequently, for each of these randomly generated points, the 
values of the previously computed indices—NDVI, NDWI, and 
the Red-Edge Index were extracted from the Sentinel-2 imagery 
across the entire time series of available data. This extraction 
process yielded a comprehensive dataset of temporal vegetation 
index profiles for each sampled location. Finally, a temporal 
analysis was performed on this extracted data, enabling the 
observation and quantification of how vegetation indices, and 
consequently, vegetation health, water content, and stress levels, 
varied over time within the paddy fields.
 
Ground Truth Data Collection & Yield Relationship Analysis
To establish a predictive model for paddy yield and to assess its 
accuracy, ground truth data was collected for the 2023 growing 
season. Specifically, 15 randomly selected points, out of the 100 
previously generated within the paddy fields, were designated 
for detailed ground truth validation. At these locations, actual 
yield measurements at harvest in 2023 were obtained. In 
conjunction with the yield data, data were collected in the field 
to document sowing dates, crop management practices, fertilizer 
and irrigation schedules, and challenges related to climate, weeds 
and water availability during the season. Indices values (NDVI, 
NDWI, Red-Edge Index) derived from Sentinel-2 imagery for 
these 15 ground truth points in 2023 were then compared with 
the corresponding measured yield data. A regression models 
(simple linear models) for each index was developed using 2023 
data to establish a quantitative relationship between vegetation 
indices and yield. These models were subsequently applied to 
2024 Sentinel-2 data to predict 2024 yield. The accuracy of the 
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prediction was then assessed by comparing the predicted 2024 
yield with the actual 2024 yield data, which was collected during 
the 2024 harvest season, allowing evaluation of the model's 
performance.

Figure 1: Flow Diagram of the Methodology

Results and Discussion
Paddy area extraction and paddy statistics of Batticaloa 
District
The paddy land statistics reveal significant spatial variability in 
cultivation practices across the Batticaloa District which include 
rainfed, major and minor irrigated paddy lands. Overall, rainfed 
cultivation accounts for the largest share of total paddy area 
which is 52.5%, highlighting the dependency of local agriculture 
on rainfall patterns and the need for improved irrigation 
infrastructure in many parts of the district.

Supervised classification using Sentinel-2 imagery with 
a 20-meter spatial resolution effectively delineated paddy 
fields across the Batticaloa District. The classification process 
identified a total of 41092 ha mapped as paddy area. When 
compared to the reported Yala season paddy extent of 38488 ha 
by the Department of Agrarian Development., the classification 
showed strong alignment, indicating reliable performance. An 
accuracy assessment yielded an overall classification accuracy of 
94%, confirming the effectiveness of the methodology. The high 
accuracy validates the use of Sentinel-2 imagery and supervised 
classification as a dependable approach for mapping agricultural 
land use in the region.

Figure 2: Yala cultivation Extent of Paddy

Spatiotemporal Distribution of Satellite Derived Indices 
Normalized Difference Vegetation Index (NDVI)
The spatial distribution of NDVI across the four crop growth 
stages illustrates the dynamic changes in paddy crop cover and 
biomass accumulation. In Stage 1 (two weeks after planting), 
NDVI values are relatively low, predominantly at around -0.05 
to 0.26, indicating sparse vegetation cover and early seedling 
establishment. These low values are expected during the early 
vegetative stage, as the leaf area index (LAI) is minimal, and 
photosynthetic activity is relatively low [20].

As the crop transitions to Stage 2 (six weeks after planting), 
NDVI values significantly increase, with a dominant shift toward 
0.19 to 0.58, signifying rapid canopy development. This stage 
corresponds to the tillering phase, where rice plants experience 
exponential vegetative growth, resulting in higher chlorophyll 
content and biomass accumulation.

Peak NDVI values are observed in Stage 3 (eight weeks after 
planting), aligning with the flowering phase, where maximum 
canopy coverage occurs, leading to the highest photosynthetic 
activity. NDVI values nearing 0.6 indicate healthy crop conditions 
and optimal greenness, which is crucial for grain formation.

In Stage 4 (thirteen weeks after planting), NDVI values show a 
slight decline, which is associated with the maturity phase of the 
rice crop. The reduction in greenness at this stage is likely due to 
senescence, chlorophyll degradation, and the transition of leaves 
from green to yellowish shades [21]. 

Normalized Difference Water Index (NDWI)
The spatial distribution of NDWI reveals the changing water 
content of the crop and soil moisture availability throughout the 
growing season. In Stage 1 (two weeks after planting), NDWI 
values are relatively high, suggesting high soil moisture and 
standing water in the paddy field, which is typical for early rice 
cultivation under flooded conditions.
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As the crop advances to Stage 2 (six weeks after planting), 
NDWI values begin to decline, reflecting increasing plant water 
uptake and evaporation. The reduction in NDWI at this stage is 
indicative of the shift from early vegetative to active tillering, 
where water requirements increase.

By Stage 3 (eight weeks after planting), NDWI reaches its 
lowest values, likely due to peak crop water demand during the 
reproductive phase. This aligns with studies indicating that NDWI 
tends to drop during critical growth periods, as transpiration 
rates are high, and the standing water level decreases [22].

In Stage 4 (thirteen weeks after planting), NDWI values show 
a slight increase compared to the eighth week but remain lower 
than in the sixth week. This increase can be attributed to the 
higher water content in the grain-filling phase. 

Figure 3: Spatial variation of NDVI in different growth stages 
of paddy (a) NDVI after 2 weeks of planting; (b) NDVI after 
6 weeks of planting; (c) NDVI after 8 weeks of planting; (d) 
NDVI after 13 weeks of planting

Figure 4: Spatial variation of NDWI in different growth stages 
of paddy (a) NDWI after 2 weeks of planting; (b) NDWI after 
6 weeks of planting; (c) NDWI after 8 weeks of planting (d) 
NDWI after 13 weeks of planting

NDVI Red-Edge Index
The NDVI red-edge follows a similar pattern as NDVI, 
demonstrating a clear progression of vegetation growth and crop 
health status. During Stage 1 (two weeks after planting), the red-
edge NDVI values are low, indicating low chlorophyll content 
in the early growth phase. These values gradually increase as 
the crop canopy develops, reaching their peak in Stage 3 (eight 
weeks after planting), similar to NDVI trends [21].

Red-edge NDVI is particularly useful in detecting plant stress and 
nitrogen availability, making it a valuable indicator for precision 
agriculture. The slightly higher red-edge values observed in 
Stage 3 suggest optimal nitrogen uptake and plant health during 
the flowering stage, which is crucial for grain development [23].

In Stage 4 (thirteen weeks after planting), red-edge NDVI values 
show a slight decline, mirroring the trend observed in NDVI. 
The reduction is attributed to senescence, where chlorophyll 
breakdown reduces the plant's reflectance in the red-edge spectral 
region [24,25]. The consistency between NDVI and red-edge 
NDVI trends confirms their strong correlation in monitoring 
crop growth and health dynamics.
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Figure 5: Spatial variation of Red Edge NDVI in different 
growth stages of paddy (a) Red-edge index after 2 weeks of 
planting; (b) Red-edge index after 6 weeks of planting; (c) Red-
edge index after 8 weeks of planting; (d) Red-edge index after 
13 weeks of planting

Distribution of Indices During Paddy Growth Cycle
Figure 9 presents the distribution of NDVI, NDWI and Red-
Edge NDVI values during the crop growth stages during 2023 
and Figure 10 presents the distribution of NDVI, NDWI and 
Red-Edge NDVI values during the crop growth stages during 
2024 at 100 random locations of paddy.

Figure 6: Distribution of indices along random locations- 2023 
Yala Season (a) 2 weeks of planting; (b) 6 weeks of planting; (c) 
8 weeks of planting; (d) 13 weeks of planting

Temporal variation of Indices
Temporal Change of NDVI 
In years 2023 and 2024, NDVI increased gradually during the 
early vegetative stage, peaking at around the 8th week after 
planting. The peak NDVI values, around 0.5, indicate maximum 
canopy coverage and chlorophyll content, as reported by Shi et 
al. (2025). The 2023 season showed a steady increase from week 
2 to 8, whereas the 2024 season exhibited a more rapid increase 
between weeks 6 and 8. The slight decline after the peak suggests 
the transition from reproductive to maturity stage. 

Temporal NDVI patterns are important as they help identify 
the period of maximum vegetative vigour, which is strongly 
correlated with final grain yield. Detecting the peak NDVI stage 
enables early assessment of crop performance and supports 
timely management decisions such as fertilizer application and 
water scheduling. Understanding these trends therefore enhances 
the ability to predict yield under data-limited conditions.

Temporal Change of NDWI
NDWI values reflect the water content in the rice field and soil 
moisture conditions. In both years (2023 and 2024), NDWI 
showed a declining trend, reaching the lowest point around 8 
weeks after planting. The sharp decline corresponds to the 
transition from the vegetative to reproductive stage when water 
requirements change significantly (Triscowati et al., 2020). After 
week 8, a slight increase in NDWI is observed, this increase 
can be attributed to the higher water content in the grain-filling 
phase.

The temporal behaviour of NDWI is crucial for monitoring field 
water availability, which directly influences rice growth stages 
and stress levels. These insights are valuable for anticipating 
water-related yield reductions and improving irrigation 
management, particularly when ground-based moisture data are 
limited.

Temporal Change of NDVI Red-Edge 
The NDVI red-edge variation (Figure 13) follows a pattern 
similar to NDVI, with a gradual increase until week 8, followed 
by a decrease. The red-edge index is particularly useful in 
detecting crop stress and chlorophyll variations, which influence 
rice yield (Delegido et al., 2013). Compared to NDVI, the red-
edge index is more sensitive to changes in plant stress and 
nitrogen content, which might explain slight differences between 
the 2023 and 2024 curves. The slightly higher red-edge NDVI 
values in 2024 suggest better plant health or improved nitrogen 
uptake compared to 2023. This agrees with the findings of 
Clevers & Gitelson (2013), who demonstrated the effectiveness 
of red-edge indices in monitoring crop health.

The temporal red-edge response is especially important because 
it provides early indications of crop stress, nitrogen status, and 
chlorophyll changes that may not be fully captured by traditional 
NDVI. Identifying these patterns improves the accuracy of 
yield prediction models and supports early intervention to 
reduce stress-related yield losses. This sensitivity makes red-
edge indices highly valuable for monitoring paddy growth in 
environments with limited field observations.
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Figure 7: (a) NDVI during 2023 and 2024 Yala Season; (b) 
NDWI during 2023 and 2024 Yala Season; (c) NDVI red-edge 
during 2023 and 2024 Yala Season

Ground Truth Collection and Yield Prediction Modelling
Yield data collected from 15 ground locations was compared 
with corresponding NDVI, and Red-edge values (at 8 weeks 
after planting) (Table 4.1).
•	 Correlation Analysis: 
•	 NDVI and yield showed a strong positive correlation (R² = 

0.70). Similar results have been obtained by Noureldin et 
al., (2013).

•	 Red-Edge Index also showed a strong positive correlation 
(R² = 0.69), proving its effectiveness in estimating yield.

•	 8 weeks after planting, which is the maximum tillering stage 
of paddy is used in correlation analysis.


