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ABSTRACT

Rice yield is significantly influenced by climatic variability, water availability, and agronomic practices. Effective monitoring of paddy
growth and yield assessment is essential to ensure food security. This study aimed to monitor rice crop growth and predict yield in the
Batticaloa District, Sri Lanka, using remote sensing and Geographic Information Systems (GIS). The analysis focused on the Yala season
due to frequent cloud cover during the Maha season. Sentinel-2 Level-2A imagery from the 2023 and 2024 Yala seasons was utilized
to derive the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Red-edge index for
assessing crop health and stress variations. Paddy cultivation areas were delineated through supervised classification of satellite images,
supported by ground truth data collected via field surveys and farmer interviews. The relationships between vegetation indices and yield
were examined using regression models. Multi-temporal analysis of NDVI, NDWI, and Red-edge indices revealed a distinct pattern, with
peak values occurring approximately eight weeks after planting. The NDVI-based yield prediction model achieved an R? of 0.70, while
the Red-edge model yielded an R? of 0.69, demonstrating strong correlations between vegetation indices and yield. Predicted yields for
the 2024 Yala season were approximately 5046 kg/ha (NDVI) and 5005 kg/ha (Red-edge), compared to the observed yield of 4497 kg/
ha. The Root Mean Square Error (RMSE) values for the NDVI and Red-edge models were 12.21% and 11.29%, respectively. These
results highlight the effectiveness of remote sensing and GIS in monitoring rice growth and estimating yield, and underscore the potential
of integrating such approaches with advanced technologies to promote precision agriculture in Sri Lanka. Future studies should aim to
improve prediction accuracy using higher-resolution imagery, enhanced ground truth datasets, and machine learning techniques.

Keywords: Remote Sensing, Rice, Vegetation indices, Satellite  (April-September), depend on monsoonal rainfall and irrigation
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Introduction

Rice is a staple food for over half of the world's population,
particularly in Asia, where it serves as a primary source of
nutrition and livelihood for millions [1]. In Sri Lanka, rice
cultivation plays a vital role in ensuring food security and
supporting rural economies, with approximately 29% of the
total cultivated land allocated to paddy farming [2]. The two
main cropping seasons, Maha (October—February) and Yala

schemes [3]. However, rice production faces multiple challenges,
including climate variability, water stress, pest infestations, and
inefficient resource management. Timely monitoring of crop
health and yield estimation is essential for efficient agricultural
planning, early warning systems, and food security [4].

Estimating crop area extent is crucial for accurate yield
predictions and agricultural resource planning. Traditional field-
based methods, such as manual surveys and visual inspections,
are time-consuming, labour-intensive, and limited in spatial
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coverage. As a result, there is an increasing need for advanced
technologies to support agricultural decision-making and to
optimize farm and field management [5].

Recent advancements in remote sensing and Geographic
Information Systems (GIS) have revolutionized crop monitoring
and yield prediction by providing large-scale, real-time, and
cost-effective solutions [6]. Satellite imagery enables continuous
observation of crop health, stress conditions, and biomass
accumulation, thereby reducing dependence on field surveys
[67-9]. Several Earth Observation (EO) satellites, including
Sentinel-2, SPOT, Landsat, and MODIS, offer multispectral data
that can be used for vegetation monitoring and yield forecasting.

By utilizing indices such as the Normalized Difference Vegetation
Index (NDVI), Normalized Difference Water Index (NDWI),
and Red-Edge Vegetation Index, important growth factors such
as plant vigour, water stress, and chlorophyll content, which are
key indicators of crop health and productivity. Several studies
have demonstrated the effectiveness of satellite-based crop
monitoring and yield estimation models. For example, Xiao etal.,
(2002) developed a rice mapping model using MODIS-derived
vegetation indices, while Setiyono et al. combined MODIS,
Sentinel-1 SAR, and the ORYZA crop growth model to improve
yield predictions [10-14]. In Sri Lanka, Bandara highlighted the
potential of remote sensing in monitoring irrigation performance
and paddy health, and Gunapala et al. successfully applied
NDVI-based models for paddy yield estimation [15,16].

In Sri Lanka, where rice cultivation plays a crucial role in
national food security, leveraging remote sensing techniques can
enhance yield predictions and resource management strategies,
particularly in regions like Batticaloa, which is one of the major
paddy-producing areas. The ability to assess spatial and temporal
variations in crop health using remote sensing data is essential
for ensuring sustainable paddy production and strengthening
climate-resilient agricultural practices.

The growing challenges in paddy cultivation due to climate
variability, water scarcity, and inefficient resource utilization
necessitate the adoption of advanced technologies for effective
crop monitoring and yield assessment. Traditional field-based
monitoring methods are not scalable, making them unsuitable
for large-area agricultural management.

Efficient agricultural planning and food security strategies
require real-time crop monitoring to detect stress conditions
early. Satellite remote sensing provides a non-destructive, cost-
effective, and scalable solution for tracking paddy crop health
across large areas. Predicting paddy yield with high accuracy
is essential for market planning, resource allocation, and food
security assessments [17]. This study integrates NDVI, NDWI,
and Red-Edge Indices to monitor crop growth throughout the
season and analyze their relationship with yield. The use of
multi-temporal satellite imagery helps in identifying crop
growth patterns, stress conditions, and water availability. Since
Sentinel-2 provides medium-resolution multispectral data, it
enables improved biophysical parameter estimation, which is
critical for precision agriculture [18].

While remote sensing applications in rice monitoring have been
widely studied in other regions, limited research has focused
on Sri Lanka, particularly in Batticaloa. This research will
contribute to localized methodologies for using remote sensing
and GIS for paddy yield prediction.

The findings of this study will provide valuable insights for
farmers, policymakers, and agricultural planners by offering
timely crop health assessments to support better irrigation and
fertilizer management, scalable and cost-effective methods for
large-area yield estimation, integration of remote sensing with
ground truth validation for enhanced precision agricultural
practice. By applying remote sensing techniques, this study aims
to provide scientifically validated solutions to improve rice yield
estimation, ultimately contributing to Sri Lanka’s agricultural
sustainability and food security efforts.

In many developing countries, including Sri Lanka, agricultural
management often operates in data-poor environments, where
accurate and timely field-level information on crop growth,
yield, and management practices is scarce due to limited
financial, technical, and institutional resources [19]. In such
contexts, remote sensing—based yield prediction models are
particularly valuable because they provide spatially continuous,
objective, and repeatable information over large agricultural
areas, overcoming the limitations of fragmented or outdated
ground data [17,19]. These satellite-derived predictions help
bridge critical data gaps, enabling early warning of production
shortfalls, improving agricultural planning, and supporting
decision-making for food security and disaster preparedness
[4,6]. Moreover, by integrating remote sensing with Geographic
Information Systems (GIS), policymakers and farmers can
generate near-real-time insights on crop health and stress
conditions even in regions lacking dense observation networks,
thereby enhancing the resilience and efficiency of agricultural
systems under data constraints [5].

Materials and Methods

Study Area

The study was conducted in the Batticaloa District (Agro-
ecological region: DL2b), Eastern Province of Sri Lanka, one
of the major rice-producing regions characterized by a tropical
monsoonal climate.

The district experiences two primary growing seasons;
*  Maha (October—February): Dominated by the Northeast
monsoon, providing ample rainfall for paddy cultivation.
* Yala (April-September): Relies mainly on irrigation
schemes due to low rainfall.
The region consists of lowland paddy fields, rivers, and irrigated
agricultural zones with varying soil types, predominantly
alluvial soils in the paddy fields, which are well-suited for rice
cultivation. a 3.5-month paddy variety, is the dominant cultivar
grown in the area. Most farmers practice broadcasting, while
transplanting is less common. Land preparation typically begins
in the second week of March for Yala season cultivation. Planting
and cultivation dates are determined during farmer organization
decision making meetings (Pre and during the season meetings).
This study focuses on selected paddy-growing areas within the
Batticaloa District during the Yala season.
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Data Collection

Data collection includes field-based ground truth data, and
secondary datasets from government and research institutions
and satellite imagery.

Satellite Data Acquisition

To monitor rice growth, Sentinel-2 Level-2A images were used
due to their high spatial, spectral, and temporal resolution. Four
time-period images were collected for analysis during 2023 and
three time-period images were collected for 2024 Yala seasons to
capture different crop growth stages. The study was restricted to
Yala season due to heavy cloud coverage in Maha season which
does not facilitate the use of satellite imagery. The selection
criteria included:

*  Cloud cover <15% to ensure clear images.
e Availability of multi-temporal images to analyze crop

growth stages

Table 1: Details of satellite images used for the analysis

Acquisition Cloud | Paddy
Year | Season ! Sensor | cover | Growth
Date

% Stage
2023 | Yala | 20230417 | MSI | 0.1% | Secdling
stage
2003 | Yala | 20230527 | MSI | 079 | lilering
stage
Panicle
2023 | Yala 2023.06.11 MSI 0.0% | initiation
stage
Heading

2023 | Yala 2023.07.16 MSI 11.8%
stage
2024 | Yala | 2024.05.06 | MSI 11% Tillering
stage
Panicle
2024 | Yala 2024.06.10 MSI 14% initiation
stage
2024 | Yala | 20240710 | MSI | 10.38% | Ficading
Stage

Land Use Classification and Paddy Area Extraction

Image acquired two weeks after planting was used to identify
the paddy cultivated areas, as it clearly differentiates paddy
fields from other vegetation; at this early stage, the fields contain
water, making them distinguishable. Supervised classification
was applied to classify the image. Subsequently, a masking
technique was applied to the classified image to isolate and
extract paddy field pixels based on their spectral and spatial
characteristics. This process effectively filtered out non-paddy
land cover classes, resulting in a refined layer representing
paddy fields. Finally, extracted paddy field layer was processed
to generate a Paddy Base Map, which served as the foundation
for subsequent spatial analyses and investigations.

Computation of vegetation Indices

In order to quantitatively assess vegetation dynamics and water
content within the study area, a suite of indices was computed
utilizing Sentinel-2 satellite imagery. The Normalized Difference
Vegetation Index (NDVI) was calculated using the Equation

NDVI= (NIR-Red)/(NIR+Red).

This index served to measure plant vigour and overall crop
health, providing insights into the photosynthetic activity and
biomass of the vegetation.

Furthermore, the Normalized Difference Water Index (NDWI)
was derived using the Equation

NDWI = (Green-NIR)/(Green+NIR)

This index aimed to identify and quantify water content within
the field and vegetation canopy, reflecting the moisture status of
the surface and plants.

Finally, the Red-Edge Index, a proxy for vegetation stress, was
calculated using the Equation Red-Edge Index = (RE3-RE1)/
(RE3+RE1)

Where RE3 corresponds to Red-edge band 3 and RE1 to Red
edge band lof Sentinel 2. This index was employed to detect
crop stress, early drought conditions, and potential disease
occurrences, leveraging the sensitivity of red-edge spectral
regions to changes in plant physiology. These three indices were
computed for each Sentinel-2 image for subsequent temporal
analysis of vegetation characteristics.

Selection of Random Sampling Points

To analyze the temporal dynamics of vegetation indices within
the paddy fields, a spatially representative sampling strategy
was employed. Specifically, 100 random points were generated
and distributed within the delineated paddy field boundaries.
Subsequently, for each of these randomly generated points, the
values of the previously computed indices—NDVI, NDWI, and
the Red-Edge Index were extracted from the Sentinel-2 imagery
across the entire time series of available data. This extraction
process yielded a comprehensive dataset of temporal vegetation
index profiles for each sampled location. Finally, a temporal
analysis was performed on this extracted data, enabling the
observation and quantification of how vegetation indices, and
consequently, vegetation health, water content, and stress levels,
varied over time within the paddy fields.

Ground Truth Data Collection & Yield Relationship Analysis

To establish a predictive model for paddy yield and to assess its
accuracy, ground truth data was collected for the 2023 growing
season. Specifically, 15 randomly selected points, out of the 100
previously generated within the paddy fields, were designated
for detailed ground truth validation. At these locations, actual
yield measurements at harvest in 2023 were obtained. In
conjunction with the yield data, data were collected in the field
to document sowing dates, crop management practices, fertilizer
and irrigation schedules, and challenges related to climate, weeds
and water availability during the season. Indices values (NDVI,
NDWI, Red-Edge Index) derived from Sentinel-2 imagery for
these 15 ground truth points in 2023 were then compared with
the corresponding measured yield data. A regression models
(simple linear models) for each index was developed using 2023
data to establish a quantitative relationship between vegetation
indices and yield. These models were subsequently applied to
2024 Sentinel-2 data to predict 2024 yield. The accuracy of the
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prediction was then assessed by comparing the predicted 2024
yield with the actual 2024 yield data, which was collected during
the 2024 harvest season, allowing evaluation of the model's
performance.

Secondary data collection . .
e Satelite Images Primary data collection
(2023 & 2024 Yala Season) * Location

+ Yield Values
o Varisty

J' .
.

Irrigation
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Figure 1: Flow Diagram of the Methodology

Results and Discussion

Paddy area extraction and paddy statistics of Batticaloa
District

The paddy land statistics reveal significant spatial variability in
cultivation practices across the Batticaloa District which include
rainfed, major and minor irrigated paddy lands. Overall, rainfed
cultivation accounts for the largest share of total paddy area
which is 52.5%, highlighting the dependency of local agriculture
on rainfall patterns and the need for improved irrigation
infrastructure in many parts of the district.

Supervised classification using Sentinel-2 imagery with
a 20-meter spatial resolution effectively delineated paddy
fields across the Batticaloa District. The classification process
identified a total of 41092 ha mapped as paddy area. When
compared to the reported Yala season paddy extent of 38488 ha
by the Department of Agrarian Development., the classification
showed strong alignment, indicating reliable performance. An
accuracy assessment yielded an overall classification accuracy of
94%, confirming the effectiveness of the methodology. The high
accuracy validates the use of Sentinel-2 imagery and supervised
classification as a dependable approach for mapping agricultural
land use in the region.

Yala Cultivation Extent of Paddy

0 10 20
LA A A S S B

40 Kilometers

Figure 2: Yala cultivation Extent of Paddy

Spatiotemporal Distribution of Satellite Derived Indices
Normalized Difference Vegetation Index (NDVI)

The spatial distribution of NDVI across the four crop growth
stages illustrates the dynamic changes in paddy crop cover and
biomass accumulation. In Stage 1 (two weeks after planting),
NDVI values are relatively low, predominantly at around -0.05
to 0.26, indicating sparse vegetation cover and early seedling
establishment. These low values are expected during the early
vegetative stage, as the leaf area index (LAI) is minimal, and
photosynthetic activity is relatively low [20].

As the crop transitions to Stage 2 (six weeks after planting),
NDVI values significantly increase, with a dominant shift toward
0.19 to 0.58, signifying rapid canopy development. This stage
corresponds to the tillering phase, where rice plants experience
exponential vegetative growth, resulting in higher chlorophyll
content and biomass accumulation.

Peak NDVI values are observed in Stage 3 (eight weeks after
planting), aligning with the flowering phase, where maximum
canopy coverage occurs, leading to the highest photosynthetic
activity. NDVI values nearing 0.6 indicate healthy crop conditions
and optimal greenness, which is crucial for grain formation.

In Stage 4 (thirteen weeks after planting), NDVI values show a
slight decline, which is associated with the maturity phase of the
rice crop. The reduction in greenness at this stage is likely due to
senescence, chlorophyll degradation, and the transition of leaves
from green to yellowish shades [21].

Normalized Difference Water Index (NDWI)

The spatial distribution of NDWI reveals the changing water
content of the crop and soil moisture availability throughout the
growing season. In Stage | (two weeks after planting), NDWI
values are relatively high, suggesting high soil moisture and
standing water in the paddy field, which is typical for early rice
cultivation under flooded conditions.
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As the crop advances to Stage 2 (six weeks after planting),
NDWI values begin to decline, reflecting increasing plant water
uptake and evaporation. The reduction in NDWTI at this stage is
indicative of the shift from early vegetative to active tillering,
where water requirements increase.

By Stage 3 (eight weeks after planting), NDWI reaches its
lowest values, likely due to peak crop water demand during the
reproductive phase. This aligns with studies indicating that NDWI
tends to drop during critical growth periods, as transpiration
rates are high, and the standing water level decreases [22].

In Stage 4 (thirteen weeks after planting), NDWI values show
a slight increase compared to the eighth week but remain lower
than in the sixth week. This increase can be attributed to the
higher water content in the grain-filling phase.

(a) NDVI Distribution- Stage 1 (b) NDVI Distribution- Stage 2
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Figure 3: Spatial variation of NDVI in different growth stages
of paddy (a) NDVI after 2 weeks of planting; (b) NDVI after
6 weeks of planting; (c) NDVI after 8 weeks of planting; (d)
NDVI after 13 weeks of planting
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Figure 4: Spatial variation of NDWI in different growth stages
of paddy (a) NDWI after 2 weeks of planting; (b) NDWI after
6 weeks of planting; (c) NDWI after 8 weeks of planting (d)
NDWI after 13 weeks of planting

NDVI Red-Edge Index

The NDVI red-edge follows a similar pattern as NDVI,
demonstrating a clear progression of vegetation growth and crop
health status. During Stage 1 (two weeks after planting), the red-
edge NDVI values are low, indicating low chlorophyll content
in the early growth phase. These values gradually increase as
the crop canopy develops, reaching their peak in Stage 3 (eight
weeks after planting), similar to NDVI trends [21].

Red-edge NDVIis particularly useful in detecting plant stress and
nitrogen availability, making it a valuable indicator for precision
agriculture. The slightly higher red-edge values observed in
Stage 3 suggest optimal nitrogen uptake and plant health during
the flowering stage, which is crucial for grain development [23].

In Stage 4 (thirteen weeks after planting), red-edge NDVI values
show a slight decline, mirroring the trend observed in NDVI.
The reduction is attributed to senescence, where chlorophyll
breakdown reduces the plant's reflectance in the red-edge spectral
region [24,25]. The consistency between NDVI and red-edge
NDVI trends confirms their strong correlation in monitoring
crop growth and health dynamics.

(a) Red-edge NDVI- Stage 1 (b) Red-edge NDVI- Stage 2
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(c)  Red-edge NDVI- Stage 3 (d) Red-edge NDVI- Stage 4
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Figure 5: Spatial variation of Red Edge NDVI in different
growth stages of paddy (a) Red-edge index after 2 weeks of
planting; (b) Red-edge index after 6 weeks of planting; (c) Red-
edge index after 8§ weeks of planting; (d) Red-edge index after
13 weeks of planting

Distribution of Indices During Paddy Growth Cycle

Figure 9 presents the distribution of NDVI, NDWI and Red-
Edge NDVI values during the crop growth stages during 2023
and Figure 10 presents the distribution of NDVI, NDWI and
Red-Edge NDVI values during the crop growth stages during
2024 at 100 random locations of paddy.
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Figure 6: Distribution of indices along random locations- 2023
Yala Season (a) 2 weeks of planting; (b) 6 weeks of planting; (c)
8 weeks of planting; (d) 13 weeks of planting

Temporal variation of Indices

Temporal Change of NDVI

In years 2023 and 2024, NDVI increased gradually during the
early vegetative stage, peaking at around the 8th week after
planting. The peak NDVI values, around 0.5, indicate maximum
canopy coverage and chlorophyll content, as reported by Shi et
al. (2025). The 2023 season showed a steady increase from week
2 to 8, whereas the 2024 season exhibited a more rapid increase
between weeks 6 and 8. The slight decline after the peak suggests
the transition from reproductive to maturity stage.

Temporal NDVI patterns are important as they help identify
the period of maximum vegetative vigour, which is strongly
correlated with final grain yield. Detecting the peak NDVI stage
enables early assessment of crop performance and supports
timely management decisions such as fertilizer application and
water scheduling. Understanding these trends therefore enhances
the ability to predict yield under data-limited conditions.

Temporal Change of NDWI

NDWI values reflect the water content in the rice field and soil
moisture conditions. In both years (2023 and 2024), NDWI
showed a declining trend, reaching the lowest point around 8
weeks after planting. The sharp decline corresponds to the
transition from the vegetative to reproductive stage when water
requirements change significantly (Triscowati et al., 2020). After
week 8, a slight increase in NDWTI is observed, this increase
can be attributed to the higher water content in the grain-filling
phase.

The temporal behaviour of NDWT is crucial for monitoring field
water availability, which directly influences rice growth stages
and stress levels. These insights are valuable for anticipating
water-related yield reductions and improving irrigation
management, particularly when ground-based moisture data are
limited.

Temporal Change of NDVI Red-Edge

The NDVI red-edge variation (Figure 13) follows a pattern
similar to NDVI, with a gradual increase until week 8, followed
by a decrease. The red-edge index is particularly useful in
detecting crop stress and chlorophyll variations, which influence
rice yield (Delegido et al., 2013). Compared to NDVI, the red-
edge index is more sensitive to changes in plant stress and
nitrogen content, which might explain slight differences between
the 2023 and 2024 curves. The slightly higher red-edge NDVI
values in 2024 suggest better plant health or improved nitrogen
uptake compared to 2023. This agrees with the findings of
Clevers & Gitelson (2013), who demonstrated the effectiveness
of red-edge indices in monitoring crop health.

The temporal red-edge response is especially important because
it provides early indications of crop stress, nitrogen status, and
chlorophyll changes that may not be fully captured by traditional
NDVI. Identifying these patterns improves the accuracy of
yield prediction models and supports early intervention to
reduce stress-related yield losses. This sensitivity makes red-
edge indices highly valuable for monitoring paddy growth in
environments with limited field observations.
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Figure 7: (a) NDVI during 2023 and 2024 Yala Season; (b)
NDWI during 2023 and 2024 Yala Season; (c¢) NDVI red-edge

during 2023 and 2024 Yala Season

Ground Truth Collection and Yield Prediction Modelling

Yield data collected from 15 ground locations was compared

with corresponding NDVI, and Red-edge values (at 8 weeks

after planting) (Table 4.1).

*  Correlation Analysis:

*  NDVI and yield showed a strong positive correlation (R? =
0.70). Similar results have been obtained by Noureldin et
al., (2013).

*  Red-Edge Index also showed a strong positive correlation
(R?=10.69), proving its effectiveness in estimating yield.

* 8 weeks after planting, which is the maximum tillering stage
of paddy is used in correlation analysis.
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