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ABSTRACT

Background: Stroke remains a critical global health concern, disproportionately affecting individuals with hypertension which is a
well-established, modifiable risk factor. Traditional risk scoring systems often fall short in accurately predicting stroke onset due to
their reliance on fixed clinical thresholds and limited variable interaction modeling. As the complexity of health data increases, machine
learning (ML) and explainable artificial intelligence (XAI) present powerful tools to uncover hidden patterns and enable precision risk
stratification.

Objectives: This study proposes a novel, interpretable machine learning framework that uses ensemble learning and SHapley Additive
exPlanations (SHAP) to enhance stroke risk prediction in hypertensive patients. The objective is twofold: to improve the predictive power
of stroke models and to provide clinically relevant insights that support real-time, data-driven decisions in preventive care.

Methods: We utilized a real-world clinical dataset encompassing demographic, physiological, and behavioral variables associated
with stroke. Data preprocessing included k-nearest neighbor imputation for missing values, normalization of continuous features, and
class balancing via Synthetic Minority Oversampling Technique (SMOTE). A hybrid feature selection pipeline, combining the sparsity-
enforcing capabilities of LASSO regression with the iterative refinement of Recursive Feature Elimination (RFE), was employed to
identify the most salient predictors. Multiple ML models, including logistic regression, deep neural networks, random forests, and gradient
boosting machines, were trained and validated using cross-validation. SHAP values were computed post-training to enable individualized,
interpretable model outputs.

Results: Ensemble models, particularly Gradient Boosting and Random Forest, demonstrated superior discriminative performance,
achieving AUC-ROC scores above 0.78 following class balancing. The integrated LASSO-RFE approach revealed age, hypertension
status, and average glucose levels as dominant predictors across models. SHAP visualizations confirmed the influence of these features,
while also highlighting nuanced interactions involving lifestyle and socioeconomic variables. Logistic Regression, when optimized for
recall, achieved the highest balanced accuracy (0.77), reinforcing the clinical utility of simpler models when interpretability is paramount.

Conclusion: This study introduces a transparent and high-performing machine learning framework for stroke risk prediction in
hypertensive individuals. By integrating ensemble learning, hybrid feature selection, and explainable Al, the framework bridges the gap
between predictive modeling and clinical applicability. These findings support the deployment of interpretable ML tools in routine care,
enabling proactive interventions, personalized patient education, and ultimately, reduced stroke incidence.

Keywords: Machine learning, Stroke Risk Prediction, Introduction
Hypertension, Predictive Modeling, Precision Medicine Hypertension is a leading modifiable risk factor for stroke,
which remains a top cause of disability and death globally
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[1]. Despite a growing prevalence of hypertension, current
risk assessment tools, such as the Framingham Risk Score
and CHA2DS2-VASc Score, are limited by their reliance on
static clinical variables. These traditional models often fail
to capture the complex interplay of genetic, physiological,
and lifestyle factors that influence stroke risk over time [2]. A
dynamic, continuously learning approach is therefore essential
for developing personalized risk assessments and targeted
preventive interventions. Recent advances in machine learning
(ML) and artificial intelligence (Al) provide a promising avenue
for enhancing stroke risk prediction. By leveraging diverse
data sources, including long-term patient records, biomarker
analyses, real-time physiological monitoring, and imaging
data, ML models can uncover hidden patterns that traditional
statistical methods might miss [3,4]. These models not only offer
more precise and individualized predictions but also support real-
time clinical decision-making, enabling timely modifications to
treatments and interventions [5,6].

The application of ML in healthcare is gaining momentum

computational  capabilities advance. Unlike traditional
population-based risk assessments, ML approaches can integrate
data from wearable devices, electronic health records, genetic
markers, and advanced imaging to tailor risk predictions to each
patient. This shift towards precision medicine holds the potential
to reduce healthcare disparities by providing more equitable,
individualized risk assessments that reflect the socioeconomic
and demographic diversity of patient populations [7]. This
research is dedicated to developing and evaluating ML models
that offer enhanced stroke risk prediction for hypertensive
patients. By addressing challenges such as data quality, model
interpretability, and clinical workflow integration [8-10], the
study aims to establish robust, evidence-based frameworks that
facilitate earlier interventions. The novelty of this work lies in
creating an integrated framework that combines hybrid machine
learning techniques with advanced data handling methods to
balance sensitivity and specificity optimally.

Table 1 shows the comparison of the results in this study with
previous knowledge in the field.

as medical

records

become

increasingly digitized and

Table 1: Comparative Summary of Contributions: Our Study vs. Related Works in Stroke Risk Prediction

non-linear interactions

Study Methodology/Focus Key Contributions Limitations Identified | Our Study’s Advancement
Framingham | Classical statistical Provided foundational risk | Oversimplified Replaced by ML models
Models regression models estimation tools relationships; ignored | capturing complex, non-linear

dynamics

Vuetal. [11]

Multi-temporal EHR
+ ML models

0.17 AUC gain over
traditional models; effective
use of timebased features

Limited
generalizability; lacked
model interpretability

Adds SHAP for transparencys;
uses ensemble models and
broader feature exploration

Andreotti et
al. [12]

RNN with attention
on longitudinal data

Captured temporal
dynamics in stroke
prediction

Hard to interpret and
train; requires large
datasets

Simpler, interpretable ensemble
models with SHAP-based
transparency

Dev et al. [13]

Neural networks
for early stroke
detection

Improved risk stratification;
emphasized key features
like glucose and BP

Data imbalance;
lacked diverse external
validation

Applied SMOTE, multi-metric
evaluation, and SHAP to
improve generalizability

Boutilier et

ML in community

Demonstrated ML’s role in

Targeted diabetes/

Uses advanced models (GBM,

specificity trade-off

on age

al., 2021 screening (India) low-resource settings hypertension; limited to | RF) focused on stroke in
simpler models clinical settings
Chen et al., Hybrid Deep Transfer | Leveraged external datasets | Data fragmentation; Focuses on unified data and
[14] Learning (HDTL) for risk prediction integration complexity | interpretability; no dependency
on transfer learning
Zhang et al. Review of model Highlighted impact of class | Poor minority class Applies SMOTE,
[15,16] challenges imbalance and sensitivity- | detection; overemphasis | threshold tuning, and SHAP to

improve stroke case capture

balanced accuracy (0.77);
interpretable predictions

clinical deployment
readiness

Johnson et al. | Critical analysis of Warned of dominant Simplified models Uses feature selection +
[17] ML use influence of age; overlooked | underutilize SHAP to model multifactorial
synergistic risk factors multifactorial influences effectively
interactions
Our Study SHAP-enhanced ML | Achieved high AUC Limited by Combines performance and
(2025) framework (0.84), recall (0.80), and generalizability and explainability; balances

sensitivity and specificity;
tailored for clinical integration

Building on the evolution from traditional epidemiological models like the Framingham Stroke Risk Profile to sophisticated ML
approaches, recent studies have demonstrated the superiority of ML-based models in capturing complex, nonlinear relationships in
multi-dimensional data [11,18]. Advanced neural networks, including recurrent and convolutional architectures, along with hybrid
frameworks that utilize techniques like transfer learning and attention mechanisms, are showing promise in enhancing prediction
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accuracy. However, challenges such as model interpretability,
data imbalance, and the risk of oversimplifying dominant
predictors remain [12-17].

Strategies including SMOTE, SHAP analysis, and ensemble
learning are being explored to overcome these hurdles, paving
the way for ML models that are both accurate and clinically
actionable. Ultimately, this study seeks to demonstrate that
ML-driven approaches can revolutionize stroke prevention in
hypertensive patients by shifting from reactive to proactive,
personalized healthcare. Through rigorous validation and
continuous adaptation, these models hold the promise of
reducing hospital admissions and healthcare costs while
improving patient outcomes on a global scale [19,20]. The
successful deployment of ML models in clinical practice
hinges not only on technical performance but also on seamless
integration into healthcare workflows and adherence to ethical
standards. Real-world implementation requires collaboration
between data scientists, clinicians, and policymakers to ensure
models are transparent, equitable, and compliant with regulatory
frameworks like HIPAA and GDPR. Additionally, the dynamic
nature of patient data necessitates continuous model updating to
maintain accuracy across diverse populations and evolving risk
factors. By addressing these practical and ethical dimensions,
ML-driven stroke prediction can transition from research
settings to scalable tools that empower clinicians with real-time,
data-driven insights—bridging the gap between algorithmic
innovation and patient-centered care.

Methodology

This study presents a structured framework for developing and
evaluating machine learning (ML) models to predict stroke risk
in hypertensive patients. Our methodology follows a systematic
pipeline, beginning with data preprocessing and feature selection,
followed by model construction, optimization, and validation.
Each phase is designed to ensure robustness, generalizability, and
clinical relevance, with rigorous statistical and ML techniques
applied to mitigate biases and enhance predictive performance.
The subsequent sections detail the technical implementation,
including dataset preparation, algorithmic approaches, and
validation metrics, supported by key equations governing model
training and evaluation.

Data Pre-processing

Missing data were addressed through advanced imputation
methods, including the k-nearest neighbors (KNN) approach, to
preserve data integrity and improve model performance:

>

1 k
i _;;xj

where )%i is the representation value of the missing data point x,
and X, represents the nearest neighbors. This approach leverages
the assumption that similar instances will exhibit similar values,
thereby preserve the intrinsic structure of the dataset while
mitigate the impact of missing information. The selection of & is
crucial, as it balances the biasvariance trade-off in the imputed
values.

Continuous variables were normalized to a range of [0,1] using
min-max scaling:

X=X .
— min
Xnorm =

X

max _'xmin

where )?i represents the imputed value for the missing data
point x,, and X, denotes the value from the j# nearest neighbor.
This scaling technique is particularly advantageous in that
features with broader numerical scales do not disproportionately
influence the learning algorithm. The uniform range achieved
through normalization also facilitates faster convergence during
the training of machine learning models, contributing to more
stable and effective performance [21].

Feature Selection

LASSO regression was used for feature selection due to its
inherent ability to perform variable reduction. LASSO (Least
Absolute Shrinkage and Selection Operator) regression
minimizes the residual sum of squares while imposing an L1
penalty on absolute values of the coefficients. This penalty has
the effect of shrinking some coefficients exactly to zero, thereby
effectively excluding non-informative features from the model.
The optimization objective for LASSO regression is given by:

2
1 . .
min _Z yi_ﬂO_Zﬂjxij +2’Z|ﬂj‘
B | 2N‘S j=1 Jj=1

where y, is the target variable (stroke risk), x, are the input
features, ﬂ/ are for the coefficients, A is the regularization
parameter, while N is the number of samples. This approach
not only helps mitigate overfitting by enforcing sparsity, but
also simplifies the final model, making it more interpretable by
clearly identifying the most impactful predictors [22].

Handling Class Imbalance

The initial phase of model training utilizes the original dataset,
where stroke cases are significantly outnumbered by non-
stroke cases. This class imbalance often skews the model’s
performance, leading it to favor the majority class. Although this
may result in high overall accuracy, it compromises the model’s
ability to correctly identify stroke cases, reducing sensitivity and
recall. As a result, critical patterns associated with stroke risk
may be overlooked, increasing the probability of false negatives
[23,24]. To mitigate this issue, our approach incorporates the
Synthetic Minority Oversampling Technique (SMOTE) during
data preprocessing, applying it exclusively to the training set.
SMOTE enhances the representation of the minority class by
generating synthetic stroke cases through interpolation between
existing instances and their closest neighbors, thus improving
the model’s ability to recognize stroke-related patterns.
Mathematically, this process is expressed as follows:

xnew = xminority + A x (xneighbor — xminority)

where A is a random number between 0 and 1. This procedure
enhances the representation of stroke cases without merely
duplicating the data, thus enriching the feature space and
enabling the model to learn more robust characteristics of both
classes [25].

After incorporating SMOTE, the model is re-trained on the now
more balanced dataset. This training phase is expected to yield
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a model with improved sensitivity towards the minority class,
thereby reducing the incidence of false negatives. Importantly,
because SMOTE is applied exclusively to the training data,
the validation and test sets remain unaltered, ensuring that
the evaluation of the model’s performance reflects real-world
conditions and that no data leakage occurs [26].

Machine Learning Models

Given the complexity of stroke risk, which is influenced by a
variety of interrelated factors, a diverse range of models were
evaluated to capture linear and non-linear relationships within
the data. Several machine learning algorithms were trained,
including logistic regression, random forests, gradient boosting
machines (GBM), deep neural networks (DNN), support vector
machines (SVM), Na“ive Bayes, and K-Nearest Neighbors
(KNN). Each model was trained on a training set and tuned
using the K-Fold cross-validation technique.

Logistic Regression
The probability of stroke risk was modeled using logistic
regression as follows:

-
(mX! sk

l+e
where P(y = 1]x) represents the probability of stroke occurrence,

x is the feature vector, and ﬁ/. are the model coefficients [27].

p(y=1[x)= (1)

A logistic regression model was selected as the baseline due to
its straightforward implementation and ease of interpretation.
This approach facilitates the estimation of stroke probability
by modeling the relationship between predictor variables and
the outcome through a weighted linear combination. Given
that variables such as age and average glucose level represent
continuous risk factors in the dataset, logistic regression
effectively quantifies their contributions, providing meaningful
insights into how each predictor influences the likelihood of
stroke through odds ratios.

Random Forests

Random Forests construct an ensemble of decision trees, where
the final prediction is obtained by averaging the individual tree
predictions:

y=—=2./() 2

N -
M~

t

where T'is the number of trees, and f(x) is the prediction from the
t-th tree. This study employed the Random Forest model because
of its robustness in processing diverse data types and its capacity
to handle missing values efficiently. By constructing an ensemble
of decision trees, Random Forests are capable of capturing non-
linear relationships and interactions among variables, such as the
combined effect of smoking status and average glucose levels on
stroke risk [4]. Despite these advantages, the interpretability of
the model is reduced compared to logistic regression, which can
be a drawback when clinical insights are required.

Gradient Boosting Machines (GBM)
Gradient Boosting Machines iteratively build an additive model:

Ex)=F, (x)*7,h,x) 3)

where F(x) is the model at stage m, & (x) is the weak learner,
and ym is the step size. Gradient Boosting Machines (GBM)
build upon this ensemble approach by sequentially addressing
the errors of previous models. GBM’s iterative refinement is
particularly useful in our context where subtle interactions, such
as the interplay between work type and marital status in modifying
stroke risk, need to be captured. Although GBM can achieve high
predictive accuracy, it demands careful hyperparameter tuning
to avoid overfitting, especially when dealing with the relatively
low prevalence of stroke in the dataset [28].

Deep Neural Networks (DNNs)

A multi-layer perceptron (MLP) was employed, using a sigmoid
activation function in the output layer for binary classification:
y=oW,-a,_,+b,) “)
where W, and b, are the weights and biases of the output layer,
a,_, is the activation from the previous layer, and ¢ represents
the sigmoid function. Deep Neural Networks (DNNs) were
also explored due to their strength in modeling highly non-
linear and complex interactions among variables. With a large
number of features that may interact in unexpected ways, such
as the potential combined impact of age, hypertension, and
heart disease, DNNs can automatically learn intricate patterns
in the data. However, the requirement for extensive training
data and computational resources, along with their inherent lack
of interpretability, poses challenges, particularly in a clinical
setting where understanding the decision process is crucial [29].

Support Vector Machine (SVM)

Support Vector Machines find an optimal hyperplane that
separates stroke and non-stroke cases. The decision function is
given by:

f(x) = sign(wTx + b) 5)
where w is the weight vector, x is the input feature vector, and
is the bias term. Support Vector Machines (SVM) were evaluated
for their robustness in high-dimensional spaces. SVMs work
well when there is a clear margin of separation between classes,
and their ability to utilize various kernel functions allows them
to model non-linear decision boundaries. This is particularly
beneficial in our study, where the separation between stroke
and non-stroke cases might be influenced by several interacting
factors [30]. Yet, SVMs can be computationally intensive and
require significant effort to adjust kernel parameters, which may
limit their practicality for real-time risk prediction.

Naive Bayes
Na'ive Bayes is based on Bayes’ Theorem and assumes
conditional independence between features:

_PODITL PCx, [ »)
P(x;,%y,...,X,)

P(y|x,,X,..sX,) 6)
The model is particularly useful for handling categorical
data and works well when feature independence holds
approximately. Na“ive Bayes offers a probabilistic approach
that is computationally efficient and performs surprisingly well
even when the assumption of feature independence is not strictly
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met. This model is particularly advantageous when dealing with
categorical data, such as smoking status and marital status,
and can serve as a quick benchmark for stroke prediction [31].
However, its simplifying assumptions can lead to suboptimal
performance in situations where the relationships between
variables, such as between hypertension and other clinical
indicators, are more complex.

K-Nearest Neighbors (KNN)
KNN predicts the class of a sample based on the majority class
of its nearest neighbors

.
Vi :z;xi

where p, is the predicted class, and X, represents the & nearest
neighbors.

(6)

K-Nearest Neighbors (KNN) algorithm was applied as a non-
parametric method that classifies cases based on the similarity
to nearby instances in the feature space. Given the diversity
of our dataset, KNN does not make strong assumptions about
data distribution and can adapt to various types of data [32].
Its simplicity makes it attractive, but the computational cost of
determining distances for each prediction and its sensitivity to
irrelevant features or noise, particularly in high-dimensional
settings, remain significant limitations.

Clinical Applicability and Interpretabilty

To ensure clinical applicability and interpretability, SHAP
(SHapley Additive exPlanations) values were used to interpret
model predictions. SHAP provides a game-theoretic framework
to explain individual predictions by attributing contributions
from each feature. The SHAP value for a feature is defined by:

b= 2

SCN\{i}

[SIMNI=[S[=D!
[N

(f(SVH) =1 (S)

where ¢l. is the SHAP value for feature i, N is the set of all
features and f{\S) is the model output for a subset of features S. In
essence, SHAP quantifies how much each feature, on average,
shifts the prediction away from the baseline. This approach
not only helps identify which clinical and demographic factors
drive a given prediction, but also fosters trust in the model by

Table 2: Summary of Dataset Variables

offering clear, case-by-case explanations, an essential aspect for
clinical adoption [33]. By combining a comprehensive suite of
performance metrics with an interpretable explanation method,
this study ensures that the models are accurate and clinically
relevant, paving the way for more informed decision-making in
stroke prevention and management.

Data Analysis and Result

This section presents a detailed analysis of the stroke prediction
dataset and the performance evaluation of the machine learning
models developed for stroke risk prediction in hypertensive
patients.

Data Description

The dataset employed in this analysis comprises medical records
from 5,110 individuals in Bangladesh, originally sourced
from the McKinsey Company and publicly accessible via
Analytics Vidhya. Its open availability facilitates its widespread
application in both research and educational contexts. The dataset
encompasses 11 clinical features alongside a binary outcome
variable indicating stroke occurrence, making it a valuable
resource for developing and accessing machine learning models
for stroke risk prediction. The dataset captures a diverse range
of demographic, clinical, and lifestyle-related factors associated
with stroke risk. Demographic attributes include gender, age,
residential setting, and marital status. Health-related factors
comprise hypertension, heart disease, average glucose levels,
body mass index (BMI), and smoking status, while employment
type serves as a socioeconomic indicator. The target variable,
stroke occurrence, is encoded as a binary outcome (1 indicating
stroke, 0 indicating no stroke). These features enable the
examination of intricate interactions and non-linear associations
within the data, which are crucial for constructing robust
predictive models.

Additionally, the dataset presents common challenges in clinical
data analysis, such as missing values and class imbalance,
reinforcing its relevance as a realistic benchmark for evaluating
advanced machine learning methodologies in stroke risk
prediction. A detailed summary of all variables, including their
descriptions, data types, and distributions, is provided in Table
2. This summary outlines key statistics such as means, standard
deviations, and categorical frequencies, offering a structured
overview of the dataset’s characteristics.

Variable Description Type Statistics/Frequencies
gender Patient’s gender Categorical | Male: 2994 (58.6%), Female: 2115 (41.4%), Other: 1
(0.02%)
age Patient’s age in years Numerical | Mean: 43.23, SD: 22.61, Median: 45, Min: 0.08, Max: 82
hypertension | Hypertension status (0 = No, 1 = Categorical | No: 4612 (90.3%), Yes: 498 (9.7%)
Yes)
heart disease Heart disease status (0 = No, 1 = Categorical | No: 4834 (94.6%), Yes: 276 (5.4%)
Yes)
ever married Marital status (Yes/No) Categorical | Yes: 3353 (65.6%), No: 1757 (34.4%)
work type Type of employment Categorical | Private: 2925 (57.2%), Selfemployed: 819 (16.0%), Govt
job: 657 (12.9%), Children: 687 (13.4%), Never worked:
22 (0.4%)
Residence type | Type of residence (Urban/Rural) Categorical | Urban: 2596 (50.8%), Rural: 2514 (49.2%)
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avg glucose Average glucose level (mg/dL) Numerical | Mean: 106.15, SD: 45.28, Median: 91.89, Min: 55.12,

level Max: 271.74

bmi Body mass index Numerical | Mean: 28.89, SD: 7.85, Median: 28.1, Min: 10.3, Max:
97.6 (201 missing values)

smoking status | Smoking status Categorical | Never smoked: 1892 (37.0%), Unknown: 1544 (30.2%),
Formerly smoked: 885 (17.3%), Smokes: 789 (15.4%)

stroke Stroke occurrence (0 = No, 1 = Yes) | Categorical | No: 4861 (95.1%), Yes: 249 (4.9%)

As indicated in Table 1, the mean age of individuals in the
dataset is 43.23 years, spanning a wide range from infancy
(0.08 years) to elderly individuals (82 years), thus capturing a
broad spectrum of age-related stroke risk factors. The dataset
reveals that hypertension is present in approximately 9.7% of
patients, while heart disease affects 5.4% of the population. The
mean glucose level is 106.15 mg/dL, with substantial variation,
highlighting potential metabolic differences among individuals.
BMI values range widely, with a mean of 28.89, and 201 missing
values, which require imputation to maintain data integrity. As
seen in Figure 1, a notable aspect of the dataset is the prevalence
of stroke, which represents 4. 9% of the cases (249 out of 5,110
patients). Given the relatively low occurrence of stroke events,
class imbalance considerations are crucial in the development of
predictive models.

5000

95.1%

4000 A

3000 -

Count

2000

1000 A

4.9%

0 1
Stroke (0 = No, 1 = Yes)

Figure 1: Stroke Distribution

Data Pre-processing Outcomes

In the initial data pre-processing phase, we addressed missing
values, specifically focusing on the Body Mass Index (BMI)
column. Prior to imputation, the dataset exhibited missing
values exclusively in the BMI variable, with 201 instances
(approximately 3.93% of the total records) recorded as “N/A” in
the original CSV file. To rectify this, we employed the K-Nearest
Neighbors (KNN) imputation method. This technique replaces
each missing BMI value with the average BMI of the five most
similar patients, as determined by other available features such
as age and average glucose level. The choice of KNN was driven
by its capacity to capture relationships between variables, thereby
providing more accurate imputations than simpler methods like
mean or median substitution. As a result, all 201 missing BMI
values were successfully imputed, yielding a complete dataset
for subsequent analysis.

Following the imputation process, we transformed the data to
prepare them for model training. Categorical variables were
converted into numerical format through one-hot encoding. For
example, the gender variable was split into binary columns for

Male and Female (with the “Other” category dropped due to
its negligible representation), and similar transformations were
applied to other categorical variables such as marital status, work
type, residence type, and smoking status. Each of these variables
was decomposed into multiple binary indicators, allowing the
model to capture distinct categories without imposing an ordinal
relationship among them. Concurrently, continuous variables—
including age, average glucose level, and the imputed BMI—
were scaled using the MinMaxScaler, normalizing their values
to a range between 0 and 1. This scaling step not only ensured
that each continuous feature contributed equally to the models
but also improved the convergence rate during training.

After these transformations, a comprehensive correlation
analysis was conducted to uncover relationships among the
features. The analysis revealed in Figure 2 several notable
findings. Age, for instance, showed a moderate positive
correlation with both hypertension (correlation coefficient 0.28)
and heart disease (0.26), suggesting that older patients are more
likely to exhibit these conditions. Additionally, age exhibited
a negative correlation with the children work type, reflecting
demographic trends. The average glucose level showed a weak
positive correlation with stroke risk (0.13), indicating that higher
glucose levels may slightly elevate the risk of stroke. Similarly,
BMI was found to have a weak positive association with both
average glucose level (0.18) and hypertension (0.16). It was also
observed that many of the one-hot encoded categorical features
displayed inherent correlations, such as a strong negative
correlation between the “ever married Yes” and “ever married
No” columns. These interrelationships were further visualized
using a heatmap of the correlation matrix.

||

Figure 2: Correlation Matrix HeatMap
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The observed correlations have significant implications for model
performance. For instance, the presence of multicollinearity
among highly correlated features, particularly among the one-
hot encoded variables, can complicate the ability of certain
models, such as Logistic Regression, to accurately estimate the
individual impact of each predictor.

This may necessitate additional feature selection or the
application of regularization techniques to mitigate the effects
of collinearity. Moreover, the relatively weak correlations
between individual risk factors and the target variable (stroke)
underscore the challenge of predicting stroke risk based on
any single feature. This highlights the importance of utilizing
machine learning models that can capture complex, non-linear
interactions among multiple features, ultimately enhancing the
accuracy and robustness of stroke risk prediction.

Feature Selection Results

The results of both RFE and LASSO regression are presented
in Figure 3, ranking the features according to their importance
scores. Based on the results, the most important feature in
predicting stroke risk in hypertensive patients is age. The
LASSO model identified unmanage as the only significant
predictor, while the RFE highlighted additional features,
including hypertension status, history of heart disease, average
glucose level, marital status, type of work, type of residence, and
smoking history. However, aggressive regularization of LASSO
removed these features, suggesting that age alone carries the
most predictive power. This finding is consistent with established
clinical knowledge that stroke risk increases significantly with
age due to vascular aging and accumulated comorbidities.

Table 3: Baseline Model Performance (Without SMOTE)

Figure 3: Feature Selection Results

The selected characteristics align with well-documented
risk factors for stroke. Age is a primary determinant, as older
individuals face increased arterial stiffness and increased
likelihood of cardiovascular disease. Hypertension and heart
disease are known contributors to stroke, as both conditions can
lead to arterial damage and impaired blood flow to the brain.
Although LASSO removed these features, their identification
by RFE suggests that they may still hold value when analyzed
together rather than in isolation.

Model Performance and Evaluation

Baseline Performance

The baseline performance results underscore the challenges of a
severe class imbalance in our stroke risk prediction task. Although
the overall accuracy for most models hovers around 95%, this
metric is misleading given the pronounced imbalance between
the non-stroke and stroke cases. For instance, while Logistic
Regression achieves a high-Test AUC-ROC of 0.842798 and a
CV AUC-ROC of 0.840920, its precision, recall, and F1-score are
all 0, indicating that it completely fails to identify any stroke cases.
Similar deficiencies are observed with SVM and KNN, which
also report negligible recall despite high accuracy (see Figure 4).

Model C\l;gI(J:C- Tesliglcjc- Accuracy | Precision | Recall | F1-Score | Log Loss z:::;;:l’
Logistic Regression 0.840920 | 0.842798 | 0.951076 | 0.000000 | 0.00 | 0.000000 | 0.154490 | 0.500000
Random Forest 0.794333 | 0.771091 | 0.948141 | 0.363636 | 0.08 | 0.131148 | 0.410224 | 0.536399
Gradient Boosting 0.830453 | 0.831626 | 0.949119 | 0.250000 | 0.02 | 0.037037 | 0.165950 | 0.508457
Deep Neural Network 0.811861 | 0.827634 | 0.947162 | 0.250000 | 0.04 | 0.068966 | 0.166697 | 0.516914
SVM 0.635974 | 0.652346 | 0.951076 | 0.000000 | 0.00 | 0.000000 | 0.194087 | 0.500000
Naive Bayes 0.813780 | 0.799033 | 0.823875 | 0.157895 | 0.60 | 0.250000 | 0.762689 | 0.717695
KNN 0.643192 | 0.618313 | 0.949119 | 0.375000 | 0.06 | 0.103448 | 1.088370 | 0.527428

In contrast, models such as Random Forest and Gradient
Boosting demonstrate moderate discriminative ability, with
Random Forest achieving a CV AUC-ROC of 0.794333 and a
Test AUC-ROC of 0.771091, and Gradient Boosting recording
0.830453 and 0.831626, respectively. However, both models
exhibit very low recall (0.08 for Random Forest and 0.02 for
Gradient Boosting), with only moderate precision (0.363636
and 0.250000, respectively) and Fl-scores of 0.131148 and
0.037037. The Deep Neural Network, while obtaining a Test
AUC-ROC of 0.827634, shows similar shortcomings, with
recall at only 0.04 and an Fl-score of 0.068966 (see Table3).
These metrics indicate that even when models can separate the
classes to some extent (as reflected by AUC-ROC), they remain
largely insensitive to the minority (stroke) class at the default

decision threshold (refer to the confusion matrices in Figures 5a
and 5b).
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f.- —— Naive Bayes (AUC: 0.799)
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Figure 4: Baseline ROC Curves
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Notably, Na"tve Bayes distinguishes itself from the other
models by achieving a recall of 0.60, coupled with a balanced
accuracy of 0.717695, despite having a lower overall accuracy
of 0.823875. This suggests that Na“1ive Bayes is comparatively
more adept at identifying stroke cases, albeit at the cost of
reduced performance on the majority class. These discrepancies,
particularly the consistently low balanced accuracy (hovering
around 0.5 for most models), indicate that many of the models
are performing no better than random guessing when it comes
to detecting stroke cases. For further details, see the confusion
matrices for KNN and Logistic Regression in Figure 11, for
Naive Bayes and Random Forest in Figure 12, and for SVM in
Figure 13.

eeeeeeeee

(b) Gradient Boosting Machine

aaaaaaaa

(a) Deep Neural Network Model

Figure 5: Confusion Matrices for Deep Neural Network and
Gradient Boosting Machine Models
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Figure 6: Confusion Matrices for KNN and Logistic Regression
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) 00 H

precicted

(a) Naive Bayes (b) Random Forest

Figure 7: Confusion Matrices for Naive Bayes and Random
Forest Models

Table 4: Performance after applying SMOTE
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Figure 8: Confusion Matrix for SVM

Overall, these baseline results highlight the critical pitfalls of
relying solely on conventional performance metrics in the
presence of severe class imbalance. High accuracy and even
moderate AUC-ROC scores are insufficient when the minority
class—stroke cases in this instance—is nearly ignored. The
observed near-zero recall and Fl-scores for most models
underscore the urgent need for class imbalance remediation
techniques, such as SMOTE, to enhance the sensitivity and
balanced accuracy of stroke risk prediction models.

Model Performance After Handling Class Imbalance

After applying SMOTE, we observe notable improvements in
the models’ abilities to detect stroke cases (the minority class),
albeit with varying degrees of trade-offs in precision and overall
accuracy. As shown in Table 4 and evident from the confusion
matrices (see Figures 11 and 12), Logistic Regression now
achieves a recall of 0.80—a substantial increase from its near-
zero baselines. This heightened sensitivity, however, comes at the
cost of reduced precision (0.14) and overall accuracy (0.75). A
similar pattern emerges in Na“1ve Bayes (recall = 0.78, precision
=0.0871) and SVM (recall = 0.72, precision = 0.1254), both of
which focus more heavily on identifying stroke cases but also
misclassify a significant number of non-stroke samples.

Model C\I;?)I(J:C- TesligchC- Accuracy | Precision | Recall | F1-Score | Log Loss z:i?::;:l’
Logistic Regression 0.850289 | 0.843930 | 0.750489 | 0.140351 | 0.80 | 0.238806 | 0.487804 | 0.773971
Random Forest 0.972465 | 0.748827 | 0.866928 | 0.122807 | 0.28 | 0.170732 | 0.520827 | 0.588560
Gradient Boosting 0.953310 | 0.787099 | 0.796477 | 0.134259 | 0.58 | 0.218045 | 0.347898 | 0.693807
Deep Neural Network 0.930009 | 0.778086 | 0.794521 | 0.122642 | 0.52 | 0.198473 | 0.444762 | 0.664321
SVM 0.895057 | 0.805741 | 0.740705 | 0.125436 | 0.72 | 0.213650 | 0.434875 | 0.730885
Naive Bayes 0.819059 | 0.798827 | 0.589041 | 0.087054 | 0.78 | 0.156627 | 1.669486 | 0.679609
KNN 0.934266 | 0.700864 | 0.801370 | 0.099476 | 0.38 | 0.157676 | 2.694022 | 0.601523

In contrast, Random Forest and KNN exhibit moderate recall gains compared to their baseline performance. Random Forest improves
its recall to 0.28 (from effectively zero at baseline) while maintaining a high accuracy of 0.87, and KNN increases its recall to 0.38,
with a balanced accuracy of 0.60. Although these improvements are less dramatic than those of Logistic Regression or Na“ive
Bayes, they offer a more tempered compromise between sensitivity and specificity. Gradient Boosting and the Deep Neural Network
likewise show recall values of 0.58 and 0.52, respectively, indicating that SMOTE enables them to capture more stroke cases than
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before without fully sacrificing their ability to correctly classify
non-stroke individuals (see Table 4).

True Positive Rate

—— Logistic Regression (AUC: 0.844)
~—— Random Forest (AUC: 0.749)

—— Gradient Boosting (AUC: 0.787)
—— Deep Neural Network (AUC: 0.778)
—— SVM (AUC: 0.806)

f. —— Naive Bayes (AUC: 0.799)
0.0 ~—— KNN (AUC: 0.701)

0.0 0.2 04 0.6 0.8 10
False Positive Rate

Figure 9: ROC Curves After SMOTE

A key measure that captures these trade-offs is balanced
accuracy, which averages sensitivity across both classes.
Logistic Regression stands out with a balanced accuracy of 0.77,
reflecting its ability to identify a substantial proportion of stroke
patients while still correctly classifying a fair share of non-
stroke individuals. Na"1ive Bayes achieves a balanced accuracy
of 0.68, while SVM records 0.73—both notably higher than
their baseline figures. Models like Random Forest and KNN
remain comparatively lower on balanced accuracy (0.59 and
0.60, respectively), but they retain higher overall accuracy. This
highlights the clinically relevant tension between missing fewer
stroke cases and avoiding an excessive false-positive rate.

1
Predicted predicted

(a) Deep Neural Network Model

(b) Gradient Boosting

Figure 10: Confusion Matrices for Deep Neural Network and
Gradient Boosting Machines
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Figure 11: Confusion Matrices for KNN and Logistic Regression
Models
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Figure 12: Confusion Matrices for Naive Bayes and Random
Forest Models
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Figure 13: Confusion Matrix for SVM.

Examining the confusion matrices of the models provide
further insights. For instance, the confusion matrix for Logistic
Regression (see Figure 11) reveals that many non-stroke cases
are misclassified, indicating that its improved recall (80% of
stroke cases identified) comes at the expense of flagging many
non-stroke patients as high risk. Similarly, the confusion matrix
for Na"ive Bayes (see Figure 12) shows that, while a high
proportion of stroke cases are correctly identified, numerous
non-stroke patients are incorrectly labeled as stroke. In real-
world settings, such an influx of false positives may strain
clinical resources, although missing stroke cases can have even
more severe consequences.

From a probabilistic standpoint, the AUC-ROC values further
underscore these dynamics. Logistic Regression retains the
highest Test AUC-ROC (0.843930), reflecting its ability to
rank-order stroke versus non-stroke individuals effectively.
SVM achieves an AUC-ROC of 0.805741, indicating solid
discrimination when thresholds are adjusted. Random Forest
(0.748827) and KNN (0.700864) remain lower in AUC-ROC
but compensate with higher overall accuracy and fewer false
positives relative to their baseline performance, as illustrated in
Table 4 and Figure 9.

Overall, SMOTE has demonstrably enhanced minority-class
detection across the board, rectifying the near-complete failure
to identify stroke cases observed in the baseline models. Yet,
the cost is evident in reduced precision and, for some models,
diminished overall accuracy. As a result, further calibration may
be necessary, such as threshold tuning, cost-sensitive learning,
or ensemble methods, to strike an optimal balance between
capturing high-risk individuals and avoiding an overabundance
of false alarms. By refining these parameters, healthcare
providers can align model predictions with clinical priorities,
ultimately improving stroke risk prediction for hypertensive
patients.

Model Interpretability with SHAP

After applying SMOTE, the Logistic Regression model emerged
as a top performer with the highest Test AUCROC (0.84393),
recall (0.80), Fl-score (0.23881), and balanced accuracy
(0.77397), indicating its strong capability in distinguishing
classes and handling imbalanced data. Additionally, Gradient
Boosting demonstrated excellent performance with the lowest log
loss (0.34792), and Random Forest achieved the highest overall
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accuracy (0.86399), making both models strong candidates
for further analysis. Given their superior performance across
multiple metrics, these models were selected for subsequent
SHAP analysis to enhance interpretability by elucidating feature
contributions in the predictive process.

[ High
num__age -{-o—- -T---oo-—-—-—..
num__avg_glucose_level - -+—-— ..
num__hypertension -l — o o
cat__work_type_Self-employed +- L °
cat__ever_married_No +— g
cat__smoking_status_never smoked * %
num__heart_disease +— - &
cat__Residence_type_Urban *
cat__work_type_Private +
cat__work_type_children I
-2 -1 (11 1 2 3 tow
SHAP value (impact on model output)

Figure 14: SHAP Summary Plot for Gradient Boosting

Figure 14 shows the SHAP Summary Plot for Gradient
Boosting. From the SHAP summary plots, we observe that age,
hypertension, and average glucose level consistently emerge
as key predictors in all three models. In the Gradient Boosting
plot, these top features exhibit a large spread of SHAP values,
highlighting their substantial effect on the model’s output. High
age or elevated glucose values (represented in red) push the
prediction toward stroke, while lower values (in blue) shift it
away from stroke. Additional factors such as work type (self-
employed, private, children) and marital status (ever married or
not) also appear, although they contribute less strongly than the
top numeric features.

High
num__age

num__avg_glucose_level
num__hypertension
cat__smoking_status_never smoked
cat__work_type_children

cat__ever_married_No

Feature value
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Figure 15: SHAP Summary Plot for Logistic Regression

Figure 15 presents the SHAP Summary Plot for Logistic
Regression. The Random Forest plot, shown in Figure 16,
focuses heavily on age and hypertension, illustrating that this
model splits the data primarily along these dimensions. Older,
hypertensive patients have a markedly higher probability of
stroke, whereas younger, non-hypertensive patients are more
likely predicted to be stroke-free. This bifurcation suggests
that Random Forest is particularly dependent on these two risk
factors, which may partially explain its high accuracy on the
majority class but relatively weaker recall.

The Logistic Regression summary plot distributes feature
influence more evenly. Age, average glucose level, and
hypertension again stand out, but categorical variables, such

as work type and smoking status, also exert noticeable shifts in
stroke probability. For example, a patient who has never smoked
generally sees a negative SHAP contribution (blue), reducing
stroke risk, while certain work types (e.g., self-employed)
may slightly increase it. This additive effect is characteristic of
logistic regression’s linear nature, making it straightforward to
interpret how each variable shifts the model’s output.

num__age

num__hypertension

~0.25 0.00 025025 0.00 0.25
SHAP interaction value

Figure 16: SHAP Summary Plot for Random Forest In contrast

Overall, the SHAP analyses confirm the importance of well-
known clinical risk factors (age, hypertension, and glucose
levels) while revealing how each model incorporates additional
demographic and lifestyle variables. These insights align with
the earlier performance metrics. Logistic Regression excels
in minority-class detection partly because it integrates a
broader set of risk factors, Random Forest prioritizes age and
hypertension in a way that bolsters accuracy but can hamper
recall, and Gradient Boosting strikes a balance with well-
calibrated probability estimates. By understanding these model-
specific patterns, clinicians and researchers can refine feature
engineering, adjust decision thresholds, or combine methods
to optimize both predictive performance and interpretability in
stroke risk prediction.

Discussion

The findings of this study highlight the considerable potential
of machine learning (ML) to improve stroke risk prediction for
hypertensive patients, addressing the limitations associated with
conventional risk assessment tools such as the Framingham Risk
Score and CHADS-VASc. This research represents a significant
step forward in the management of cardiovascular health, as early
and accurate identification of high-risk individuals can facilitate
timely interventions and improve preventive care strategies.

A key strength of this study is the incorporation of explainability
frameworks, particularly SHapley Additive exPlanations
(SHAP), which provide transparent insights into how individual
features influence model predictions. This level of interpretability
is essential to foster clinical trust and promote the integration
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of ML-based tools into routine medical practice. In particular,
SHAP analysis underscored the predictive importance of
factors such as age, cholesterol levels, and lifestyle behaviors.
While these findings align with established clinical knowledge,
the model also identified subtle, non-linear interactions that
conventional statistical methods may fail to capture, further
demonstrating the added value of ML in stroke risk assessment.

Despite the promising potential of ML-driven stroke risk
prediction, several challenges must be addressed to ensure
its effective implementation in clinical practice. One major
limitation is the quality and availability of the data, as incomplete,
unbalanced, or biased datasets can undermine model accuracy
and limit generalizability. In addition, integrating ML models
into routine healthcare workflows requires careful consideration
of usability, interoperability with existing systems, and
adherence to regulatory guidelines. Clinicians must be equipped
with adequate training and decision-support tools to effectively
interpret and act upon machine learning-generated predictions.

Ethical considerations also play a crucial role in deploying ML-
based models in healthcare. Ensuring fairness and mitigating
algorithmic bias is essential, particularly when applying these
models across diverse populations, to prevent disparities in
patient care. Future research should prioritize external validation
in larger, more diverse cohorts, explore the integration of real-
time data from wearable health devices, and assess the long-term
clinical utility of these predictive models. Collaborative efforts
among researchers, healthcare professionals, and policymakers
will be critical in addressing these challenges and driving
progress in precision medicine.

Despite these hurdles, the findings of this study highlight the
transformative potential of ML in enhancing stroke risk prediction
and prevention. By bridging the gap between predictive analytics
and actionable clinical insights, MLbased models can support
more personalized and proactive healthcare interventions. This
research contributes to the growing body of evidence supporting
the role of explainable Al in medicine, paving the way for
innovative approaches to reducing the global burden of stroke
and improving patient outcomes. Future work should continue
refining these models, addressing implementation challenges,
and exploring their broader applicability in cardiovascular and
chronic disease management. Moreover, using a comprehensive
dataset and advanced ML methodologies, this study developed
predictive models that demonstrated superior performance
compared to traditional risk assessment tools, such as the
Framingham Stroke Risk Profile and the CHA2DS2-VASc score,
reinforcing the value of ML in modern clinical decision-making.
This also validates the superiority of ML in capturing non-linear
relationships between risk factors, aligning with the recent
literature on stroke risk prediction [11]. Our findings emphasize
that ML models, particularly ensemble methods, can detect subtle
interactions between risk factors that traditional models fail to
capture. Compared to conventional logistic regression models,
GBM demonstrated significantly higher predictive accuracy,
supporting the growing body of evidence favoring ML in the
assessment of stroke risk [34] The use of SHAP values for model
interpretability addresses the challenge of black-box ML models
in healthcare. By applying SHAP values, our findings align
with previous studies that highlight the role of explainable Al in

medical diagnostics [35,36]. Furthermore, integrating temporal
trends into our risk assessment model improves predictive
robustness, consistent with previous research demonstrating the
importance of time-dependent cardiovascular risks in clinical
decision-making [37,38].

Machine learning roles in optimizing electronic health records
(EHRs) for predictive modeling has been underscored in recent
research [39]. Our study builds on this by integrating diverse
patient attributes, demonstrating how structured EHR data
can improve risk prediction for stroke prevention. Moreover,
performance evaluation of ML models in cause-of-death
determination has shown promising results in public health
applications [40]. These findings underscore the potential of
machine learning (ML) to enhance traditional epidemiological
approaches by capturing complex patterns in stroke risk
assessment. However, challenges such as data imbalance remain
a significant concern. The disproportionately lower prevalence
of stroke cases compared to nonstroke cases can introduce
bias, potentially compromising model performance. To address
this issue, innovative data augmentation strategies, including
generative adversarial networks (GANs), have been explored
to enhance model robustness, improve classification accuracy,
and ensure a more representative distribution of stroke cases in
predictive modeling [40]. Furthermore, model validation across
diverse populations is necessary to ensure generalizability
and minimize dataset bias [41]. Additionally, ML has shown
an efficacy in improving diagnostic precision in rehabilitation
medicine, particularly in conditions such as lumbar disc
herniation [42]. Integrating ML with real-world data sources
could further enhance stroke risk prediction.

Conclusion

This study investigates the application of machine learning
(ML) models for stroke risk prediction in hypertensive patients,
using SHapley Additive exPlanations (SHAP) to enhance model
interpretability. Our findings indicate that ML algorithms,
particularly ensemble-based approaches, demonstrate strong
predictive performance in identifying individuals at elevated
risk of stroke. The integration of SHAP explainability provided
crucial insights into the influence of key clinical features—
including blood pressure levels, age, cholesterol levels, and
lifestyle factors—on stroke risk. This transparency not only
aligns with established clinical knowledge but also enhances the
model’s practical utility for healthcare providers. By bridging
the gap between complex predictive analytics and actionable
clinical insights, this research underscores the transformative
potential of ML in early stroke risk assessment and personalized
intervention strategies for hypertensive patients. The results
highlight the effectiveness of ensemble learning methods,
particularly gradient boosting models (GBM), in refining risk
prediction while maintaining interpretability through SHAP-
based feature attribution. Future studies should explore the
integration of multimodal data sources, such as neuroimaging,
genetic biomarkers, and continuous monitoring of data to further
enhance predictive accuracy. Furthermore, rigorous validation
using real-world hospital data has reinforced the potential of ML
in clinical decision-making and hospital-based risk assessments.
Addressing challenges such as model generalizability, data
heterogeneity, and ethical considerations will be crucial in
translating ML-driven risk prediction from research settings
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to routine clinical practice. Moving forward, future work will
focus on validating the model across diverse populations,
incorporating real-time patient data, and ensuring adaptability
to different healthcare environments. This study contributes to
the growing body of evidence supporting the role of explainable
Al in healthcare, paving the way for more informed decision-
making and improved patient outcomes. By embracing Al-
driven methodologies and refining ML-based risk assessment
frameworks, healthcare systems can enhance stroke prevention
strategies, ultimately reducing the global burden of stroke.
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