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ABSTRACT
Background: Stroke remains a critical global health concern, disproportionately affecting individuals with hypertension which is a 
well-established, modifiable risk factor. Traditional risk scoring systems often fall short in accurately predicting stroke onset due to 
their reliance on fixed clinical thresholds and limited variable interaction modeling. As the complexity of health data increases, machine 
learning (ML) and explainable artificial intelligence (XAI) present powerful tools to uncover hidden patterns and enable precision risk 
stratification.

Objectives: This study proposes a novel, interpretable machine learning framework that uses ensemble learning and SHapley Additive 
exPlanations (SHAP) to enhance stroke risk prediction in hypertensive patients. The objective is twofold: to improve the predictive power 
of stroke models and to provide clinically relevant insights that support real-time, data-driven decisions in preventive care.

Methods: We utilized a real-world clinical dataset encompassing demographic, physiological, and behavioral variables associated 
with stroke. Data preprocessing included k-nearest neighbor imputation for missing values, normalization of continuous features, and 
class balancing via Synthetic Minority Oversampling Technique (SMOTE). A hybrid feature selection pipeline, combining the sparsity-
enforcing capabilities of LASSO regression with the iterative refinement of Recursive Feature Elimination (RFE), was employed to 
identify the most salient predictors. Multiple ML models, including logistic regression, deep neural networks, random forests, and gradient 
boosting machines, were trained and validated using cross-validation. SHAP values were computed post-training to enable individualized, 
interpretable model outputs.

Results: Ensemble models, particularly Gradient Boosting and Random Forest, demonstrated superior discriminative performance, 
achieving AUC-ROC scores above 0.78 following class balancing. The integrated LASSO-RFE approach revealed age, hypertension 
status, and average glucose levels as dominant predictors across models. SHAP visualizations confirmed the influence of these features, 
while also highlighting nuanced interactions involving lifestyle and socioeconomic variables. Logistic Regression, when optimized for 
recall, achieved the highest balanced accuracy (0.77), reinforcing the clinical utility of simpler models when interpretability is paramount. 

Conclusion: This study introduces a transparent and high-performing machine learning framework for stroke risk prediction in 
hypertensive individuals. By integrating ensemble learning, hybrid feature selection, and explainable AI, the framework bridges the gap 
between predictive modeling and clinical applicability. These findings support the deployment of interpretable ML tools in routine care, 
enabling proactive interventions, personalized patient education, and ultimately, reduced stroke incidence.
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Introduction
Hypertension is a leading modifiable risk factor for stroke, 
which remains a top cause of disability and death globally 
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[1]. Despite a growing prevalence of hypertension, current 
risk assessment tools, such as the Framingham Risk Score 
and CHA2DS2-VASc Score, are limited by their reliance on 
static clinical variables. These traditional models often fail 
to capture the complex interplay of genetic, physiological, 
and lifestyle factors that influence stroke risk over time [2]. A 
dynamic, continuously learning approach is therefore essential 
for developing personalized risk assessments and targeted 
preventive interventions. Recent advances in machine learning 
(ML) and artificial intelligence (AI) provide a promising avenue 
for enhancing stroke risk prediction. By leveraging diverse 
data sources, including long-term patient records, biomarker 
analyses, real-time physiological monitoring, and imaging 
data, ML models can uncover hidden patterns that traditional 
statistical methods might miss [3,4]. These models not only offer 
more precise and individualized predictions but also support real-
time clinical decision-making, enabling timely modifications to 
treatments and interventions [5,6].

The application of ML in healthcare is gaining momentum 
as medical records become increasingly digitized and 

computational capabilities advance. Unlike traditional 
population-based risk assessments, ML approaches can integrate 
data from wearable devices, electronic health records, genetic 
markers, and advanced imaging to tailor risk predictions to each 
patient. This shift towards precision medicine holds the potential 
to reduce healthcare disparities by providing more equitable, 
individualized risk assessments that reflect the socioeconomic 
and demographic diversity of patient populations [7]. This 
research is dedicated to developing and evaluating ML models 
that offer enhanced stroke risk prediction for hypertensive 
patients. By addressing challenges such as data quality, model 
interpretability, and clinical workflow integration [8-10], the 
study aims to establish robust, evidence-based frameworks that 
facilitate earlier interventions. The novelty of this work lies in 
creating an integrated framework that combines hybrid machine 
learning techniques with advanced data handling methods to 
balance sensitivity and specificity optimally.

Table 1 shows the comparison of the results in this study with 
previous knowledge in the field.

Table 1: Comparative Summary of Contributions: Our Study vs. Related Works in Stroke Risk Prediction
Study Methodology/Focus Key Contributions Limitations Identified Our Study’s Advancement

Framingham 
Models

Classical statistical 
regression models

Provided foundational risk 
estimation tools

Oversimplified 
relationships; ignored 
non-linear interactions

Replaced by ML models 
capturing complex, non-linear 
dynamics

Vu et al. [11] Multi-temporal EHR 
+ ML models

0.17 AUC gain over 
traditional models; effective 
use of timebased features

Limited 
generalizability; lacked 
model interpretability

Adds SHAP for transparency; 
uses ensemble models and 
broader feature exploration

Andreotti et 
al. [12]

RNN with attention 
on longitudinal data

Captured temporal 
dynamics in stroke 
prediction

Hard to interpret and 
train; requires large 
datasets

Simpler, interpretable ensemble 
models with SHAP-based 
transparency

Dev et al. [13] Neural	 networks	
for early stroke 
detection

Improved risk stratification; 
emphasized key features 
like glucose and BP

Data imbalance; 
lacked diverse external 
validation

Applied SMOTE, multi-metric 
evaluation, and SHAP to 
improve generalizability

Boutilier et 
al., 2021

ML in community 
screening (India)

Demonstrated ML’s role in 
low-resource settings

Targeted	diabetes/
hypertension; limited to 
simpler models

Uses advanced models (GBM, 
RF) focused on stroke in 
clinical settings

Chen et al., 
[14]

Hybrid Deep Transfer 
Learning (HDTL)

Leveraged external datasets 
for risk prediction

Data fragmentation; 
integration complexity

Focuses on unified data and 
interpretability; no dependency 
on transfer learning

Zhang et al. 
[15,16]

Review of model 
challenges

Highlighted impact of class 
imbalance and sensitivity- 
specificity trade-off

Poor minority class 
detection; overemphasis 
on age

Applies	 SMOTE,	
threshold tuning, and SHAP to 
improve stroke case capture

Johnson et al. 
[17]

Critical analysis of 
ML use

Warned of dominant 
influence of age; overlooked 
synergistic risk factors

Simplified models 
underutilize 
multifactorial 
interactions

Uses feature selection + 
SHAP to model multifactorial 
influences effectively

Our Study 
(2025)

SHAP-enhanced ML 
framework

Achieved high AUC 
(0.84), recall (0.80), and 
balanced accuracy (0.77); 
interpretable predictions

Limited by 
generalizability and 
clinical deployment 
readiness

Combines performance and 
explainability; balances 
sensitivity and specificity; 
tailored for clinical integration

Building on the evolution from traditional epidemiological models like the Framingham Stroke Risk Profile to sophisticated ML 
approaches, recent studies have demonstrated the superiority of ML-based models in capturing complex, nonlinear relationships in 
multi-dimensional data [11,18]. Advanced neural networks, including recurrent and convolutional architectures, along with hybrid 
frameworks that utilize techniques like transfer learning and attention mechanisms, are showing promise in enhancing prediction 
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accuracy. However, challenges such as model interpretability, 
data imbalance, and the risk of oversimplifying dominant 
predictors remain [12-17].

Strategies including SMOTE, SHAP analysis, and ensemble 
learning are being explored to overcome these hurdles, paving 
the way for ML models that are both accurate and clinically 
actionable. Ultimately, this study seeks to demonstrate that 
ML-driven approaches can revolutionize stroke prevention in 
hypertensive patients by shifting from reactive to proactive, 
personalized healthcare. Through rigorous validation and 
continuous adaptation, these models hold the promise of 
reducing hospital admissions and healthcare costs while 
improving patient outcomes on a global scale [19,20]. The 
successful deployment of ML models in clinical practice 
hinges not only on technical performance but also on seamless 
integration into healthcare workflows and adherence to ethical 
standards. Real-world implementation requires collaboration 
between data scientists, clinicians, and policymakers to ensure 
models are transparent, equitable, and compliant with regulatory 
frameworks like HIPAA and GDPR. Additionally, the dynamic 
nature of patient data necessitates continuous model updating to 
maintain accuracy across diverse populations and evolving risk 
factors. By addressing these practical and ethical dimensions, 
ML-driven stroke prediction can transition from research 
settings to scalable tools that empower clinicians with real-time, 
data-driven insights—bridging the gap between algorithmic 
innovation and patient-centered care.

Methodology
This study presents a structured framework for developing and 
evaluating machine learning (ML) models to predict stroke risk 
in hypertensive patients. Our methodology follows a systematic 
pipeline, beginning with data preprocessing and feature selection, 
followed by model construction, optimization, and validation. 
Each phase is designed to ensure robustness, generalizability, and 
clinical relevance, with rigorous statistical and ML techniques 
applied to mitigate biases and enhance predictive performance. 
The subsequent sections detail the technical implementation, 
including dataset preparation, algorithmic approaches, and 
validation metrics, supported by key equations governing model 
training and evaluation.

Data Pre-processing
Missing data were addressed through advanced imputation 
methods, including the k-nearest neighbors (KNN) approach, to 
preserve data integrity and improve model performance:
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where ˆix  is the representation value of the missing data point xi, 
and xj represents the nearest neighbors. This approach leverages 
the assumption that similar instances will exhibit similar values, 
thereby preserve the intrinsic structure of the dataset while 
mitigate the impact of missing information. The selection of k is 
crucial, as it balances the biasvariance trade-off in the imputed 
values.

Continuous variables were normalized to a range of [0,1] using 
min-max scaling:

min

max min
norm

x xx
x x

−
=

−

where ˆix  represents the imputed value for the missing data 
point xi, and xj denotes the value from the jth nearest neighbor. 
This scaling technique is particularly advantageous in that 
features with broader numerical scales do not disproportionately 
influence the learning algorithm. The uniform range achieved 
through normalization also facilitates faster convergence during 
the training of machine learning models, contributing to more 
stable and effective performance [21].

Feature Selection
LASSO regression was used for feature selection due to its 
inherent ability to perform variable reduction. LASSO (Least 
Absolute Shrinkage and Selection Operator) regression 
minimizes the residual sum of squares while imposing an L1 
penalty on absolute values of the coefficients. This penalty has 
the effect of shrinking some coefficients exactly to zero, thereby 
effectively excluding non-informative features from the model. 
The optimization objective for LASSO regression is given by:
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where yi is the target variable (stroke risk), xij are the input 
features, βj are for the coefficients, λ is the regularization 
parameter, while N is the number of samples. This approach 
not only helps mitigate overfitting by enforcing sparsity, but 
also simplifies the final model, making it more interpretable by 
clearly identifying the most impactful predictors [22].

Handling Class Imbalance
The initial phase of model training utilizes the original dataset, 
where stroke cases are significantly outnumbered by non-
stroke cases. This class imbalance often skews the model’s 
performance, leading it to favor the majority class. Although this 
may result in high overall accuracy, it compromises the model’s 
ability to correctly identify stroke cases, reducing sensitivity and 
recall. As a result, critical patterns associated with stroke risk 
may be overlooked, increasing the probability of false negatives 
[23,24]. To mitigate this issue, our approach incorporates the 
Synthetic Minority Oversampling Technique (SMOTE) during 
data preprocessing, applying it exclusively to the training set. 
SMOTE enhances the representation of the minority class by 
generating synthetic stroke cases through interpolation between 
existing instances and their closest neighbors, thus improving 
the model’s ability to recognize stroke-related patterns. 
Mathematically, this process is expressed as follows:

xnew = xminority + λ × (xneighbor − xminority)

where λ is a random number between 0 and 1. This procedure 
enhances the representation of stroke cases without merely 
duplicating the data, thus enriching the feature space and 
enabling the model to learn more robust characteristics of both 
classes [25].

After incorporating SMOTE, the model is re-trained on the now 
more balanced dataset. This training phase is expected to yield 

β
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a model with improved sensitivity towards the minority class, 
thereby reducing the incidence of false negatives. Importantly, 
because SMOTE is applied exclusively to the training data, 
the validation and test sets remain unaltered, ensuring that 
the evaluation of the model’s performance reflects real-world 
conditions and that no data leakage occurs [26].

Machine Learning Models
Given the complexity of stroke risk, which is influenced by a 
variety of interrelated factors, a diverse range of models were 
evaluated to capture linear and non-linear relationships within 
the data. Several machine learning algorithms were trained, 
including logistic regression, random forests, gradient boosting 
machines (GBM), deep neural networks (DNN), support vector 
machines (SVM), Na¨ıve Bayes, and K-Nearest Neighbors 
(KNN). Each model was trained on a training set and tuned 
using the K-Fold cross-validation technique.

Logistic Regression
The probability of stroke risk was modeled using logistic 
regression as follows:
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where P(y = 1|x) represents the probability of stroke occurrence, 
x is the feature vector, and βj are the model coefficients [27].

A logistic regression model was selected as the baseline due to 
its straightforward implementation and ease of interpretation. 
This approach facilitates the estimation of stroke probability 
by modeling the relationship between predictor variables and 
the outcome through a weighted linear combination. Given 
that variables such as age and average glucose level represent 
continuous risk factors in the dataset, logistic regression 
effectively quantifies their contributions, providing meaningful 
insights into how each predictor influences the likelihood of 
stroke through odds ratios.

Random Forests
Random Forests construct an ensemble of decision trees, where 
the final prediction is obtained by averaging the individual tree 
predictions:
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where T is the number of trees, and ft(x) is the prediction from the 
t-th tree. This study employed the Random Forest model because 
of its robustness in processing diverse data types and its capacity 
to handle missing values efficiently. By constructing an ensemble 
of decision trees, Random Forests are capable of capturing non-
linear relationships and interactions among variables, such as the 
combined effect of smoking status and average glucose levels on 
stroke risk [4]. Despite these advantages, the interpretability of 
the model is reduced compared to logistic regression, which can 
be a drawback when clinical insights are required.

Gradient Boosting Machines (GBM)
Gradient Boosting Machines iteratively build an additive model:

Fm(x) = Fm−1(x) + γmhm(x)				                (3)

where Ft(x) is the model at stage m, hm(x) is the weak learner, 
and γm is the step size. Gradient Boosting Machines (GBM) 
build upon this ensemble approach by sequentially addressing 
the errors of previous models. GBM’s iterative refinement is 
particularly useful in our context where subtle interactions, such 
as the interplay between work type and marital status in modifying 
stroke risk, need to be captured. Although GBM can achieve high 
predictive accuracy, it demands careful hyperparameter tuning 
to avoid overfitting, especially when dealing with the relatively 
low prevalence of stroke in the dataset [28].

Deep Neural Networks (DNNs)
A multi-layer perceptron (MLP) was employed, using a sigmoid 
activation function in the output layer for binary classification:

1ˆ ( )L L Ly W a bσ −= ⋅ + 				                 (4)

where WL and bL are the weights and biases of the output layer, 
aL−1 is the activation from the previous layer, and σ represents 
the sigmoid function. Deep Neural Networks (DNNs) were 
also explored due to their strength in modeling highly non-
linear and complex interactions among variables. With a large 
number of features that may interact in unexpected ways, such 
as the potential combined impact of age, hypertension, and 
heart disease, DNNs can automatically learn intricate patterns 
in the data. However, the requirement for extensive training 
data and computational resources, along with their inherent lack 
of interpretability, poses challenges, particularly in a clinical 
setting where understanding the decision process is crucial [29].

Support Vector Machine (SVM)
Support Vector Machines find an optimal hyperplane that 
separates stroke and non-stroke cases. The decision function is 
given by:

f(x) = sign(wTx + b) 				                (5)

where w is the weight vector, x is the input feature vector, and b 
is the bias term. Support Vector Machines (SVM) were evaluated 
for their robustness in high-dimensional spaces. SVMs work 
well when there is a clear margin of separation between classes, 
and their ability to utilize various kernel functions allows them 
to model non-linear decision boundaries. This is particularly 
beneficial in our study, where the separation between stroke 
and non-stroke cases might be influenced by several interacting 
factors [30]. Yet, SVMs can be computationally intensive and 
require significant effort to adjust kernel parameters, which may 
limit their practicality for real-time risk prediction.

Naıve Bayes
Na¨ıve Bayes is based on Bayes’ Theorem and assumes 
conditional independence between features:
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The model is particularly useful for handling categorical 
data and works well when feature independence holds 
approximately. Na¨ıve Bayes offers a probabilistic approach 
that is computationally efficient and performs surprisingly well 
even when the assumption of feature independence is not strictly 
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met. This model is particularly advantageous when dealing with 
categorical data, such as smoking status and marital status, 
and can serve as a quick benchmark for stroke prediction [31]. 
However, its simplifying assumptions can lead to suboptimal 
performance in situations where the relationships between 
variables, such as between hypertension and other clinical 
indicators, are more complex.

K-Nearest Neighbors (KNN)
KNN predicts the class of a sample based on the majority class 
of its nearest neighbors

1

1ˆ
k

i i
j

y x
k =

= ∑ 					                  (6)

where ˆiy  is the predicted class, and xj represents the k nearest 
neighbors.

K-Nearest Neighbors (KNN) algorithm was applied as a non-
parametric method that classifies cases based on the similarity 
to nearby instances in the feature space. Given the diversity 
of our dataset, KNN does not make strong assumptions about 
data distribution and can adapt to various types of data [32]. 
Its simplicity makes it attractive, but the computational cost of 
determining distances for each prediction and its sensitivity to 
irrelevant features or noise, particularly in high-dimensional 
settings, remain significant limitations.

Clinical Applicability and Interpretabilty
To ensure clinical applicability and interpretability, SHAP 
(SHapley Additive exPlanations) values were used to interpret 
model predictions. SHAP provides a game-theoretic framework 
to explain individual predictions by attributing contributions 
from each feature. The SHAP value for a feature is defined by:
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where ϕi is the SHAP value for feature i, N is the set of all 
features and f(S) is the model output for a subset of features S. In 
essence, SHAP quantifies how much each feature, on average, 
shifts the prediction away from the baseline. This approach 
not only helps identify which clinical and demographic factors 
drive a given prediction, but also fosters trust in the model by 

offering clear, case-by-case explanations, an essential aspect for 
clinical adoption [33]. By combining a comprehensive suite of 
performance metrics with an interpretable explanation method, 
this study ensures that the models are accurate and clinically 
relevant, paving the way for more informed decision-making in 
stroke prevention and management.

Data Analysis and Result
This section presents a detailed analysis of the stroke prediction 
dataset and the performance evaluation of the machine learning 
models developed for stroke risk prediction in hypertensive 
patients.

Data Description
The dataset employed in this analysis comprises medical records 
from 5,110 individuals in Bangladesh, originally sourced 
from the McKinsey Company and publicly accessible via 
Analytics Vidhya. Its open availability facilitates its widespread 
application in both research and educational contexts. The dataset 
encompasses 11 clinical features alongside a binary outcome 
variable indicating stroke occurrence, making it a valuable 
resource for developing and accessing machine learning models 
for stroke risk prediction. The dataset captures a diverse range 
of demographic, clinical, and lifestyle-related factors associated 
with stroke risk. Demographic attributes include gender, age, 
residential setting, and marital status. Health-related factors 
comprise hypertension, heart disease, average glucose levels, 
body mass index (BMI), and smoking status, while employment 
type serves as a socioeconomic indicator. The target variable, 
stroke occurrence, is encoded as a binary outcome (1 indicating 
stroke, 0 indicating no stroke). These features enable the 
examination of intricate interactions and non-linear associations 
within the data, which are crucial for constructing robust 
predictive models.

Additionally, the dataset presents common challenges in clinical 
data analysis, such as missing values and class imbalance, 
reinforcing its relevance as a realistic benchmark for evaluating 
advanced machine learning methodologies in stroke risk 
prediction. A detailed summary of all variables, including their 
descriptions, data types, and distributions, is provided in Table 
2. This summary outlines key statistics such as means, standard 
deviations, and categorical frequencies, offering a structured 
overview of the dataset’s characteristics.

Table 2: Summary of Dataset Variables
Variable Description Type Statistics/Frequencies

gender Patient’s gender Categorical Male: 2994 (58.6%), Female: 2115 (41.4%), Other: 1 
(0.02%)

age Patient’s age in years Numerical Mean: 43.23, SD: 22.61, Median: 45, Min: 0.08, Max: 82
hypertension Hypertension status (0 = No, 1 = 

Yes)
Categorical No: 4612 (90.3%), Yes: 498 (9.7%)

heart disease Heart disease status (0 = No, 1 = 
Yes)

Categorical No: 4834 (94.6%), Yes: 276 (5.4%)

ever married Marital status (Yes/No) Categorical Yes: 3353 (65.6%), No: 1757 (34.4%)
work type Type of employment Categorical Private: 2925 (57.2%), Selfemployed: 819 (16.0%), Govt 

job: 657 (12.9%), Children: 687 (13.4%), Never worked: 
22 (0.4%)

Residence type Type of residence (Urban/Rural) Categorical Urban: 2596 (50.8%), Rural: 2514 (49.2%)
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avg  glucose 
level

Average glucose level (mg/dL) Numerical Mean: 106.15, SD: 45.28, Median: 91.89, Min: 55.12, 
Max: 271.74

bmi Body mass index Numerical Mean:	 28.89, SD: 7.85, Median: 28.1, Min: 10.3, Max: 
97.6 (201 missing values)

smoking status Smoking status Categorical Never smoked: 1892 (37.0%), Unknown: 1544 (30.2%), 
Formerly smoked: 885 (17.3%), Smokes: 789 (15.4%)

stroke Stroke occurrence (0 = No, 1 = Yes) Categorical No: 4861 (95.1%), Yes: 249 (4.9%)

As indicated in Table 1, the mean age of individuals in the 
dataset is 43.23 years, spanning a wide range from infancy 
(0.08 years) to elderly individuals (82 years), thus capturing a 
broad spectrum of age-related stroke risk factors. The dataset 
reveals that hypertension is present in approximately 9.7% of 
patients, while heart disease affects 5.4% of the population. The 
mean glucose level is 106.15 mg/dL, with substantial variation, 
highlighting potential metabolic differences among individuals. 
BMI values range widely, with a mean of 28.89, and 201 missing 
values, which require imputation to maintain data integrity. As 
seen in Figure 1, a notable aspect of the dataset is the prevalence 
of stroke, which represents 4. 9% of the cases (249 out of 5,110 
patients). Given the relatively low occurrence of stroke events, 
class imbalance considerations are crucial in the development of 
predictive models.

Figure 1: Stroke Distribution

Data Pre-processing Outcomes
In the initial data pre-processing phase, we addressed missing 
values, specifically focusing on the Body Mass Index (BMI) 
column. Prior to imputation, the dataset exhibited missing 
values exclusively in the BMI variable, with 201 instances 
(approximately 3.93% of the total records) recorded as “N/A” in 
the original CSV file. To rectify this, we employed the K-Nearest 
Neighbors (KNN) imputation method. This technique replaces 
each missing BMI value with the average BMI of the five most 
similar patients, as determined by other available features such 
as age and average glucose level. The choice of KNN was driven 
by its capacity to capture relationships between variables, thereby 
providing more accurate imputations than simpler methods like 
mean or median substitution. As a result, all 201 missing BMI 
values were successfully imputed, yielding a complete dataset 
for subsequent analysis.

Following the imputation process, we transformed the data to 
prepare them for model training. Categorical variables were 
converted into numerical format through one-hot encoding. For 
example, the gender variable was split into binary columns for 

Male and Female (with the “Other” category dropped due to 
its negligible representation), and similar transformations were 
applied to other categorical variables such as marital status, work 
type, residence type, and smoking status. Each of these variables 
was decomposed into multiple binary indicators, allowing the 
model to capture distinct categories without imposing an ordinal 
relationship among them. Concurrently, continuous variables—
including age, average glucose level, and the imputed BMI—
were scaled using the MinMaxScaler, normalizing their values 
to a range between 0 and 1. This scaling step not only ensured 
that each continuous feature contributed equally to the models 
but also improved the convergence rate during training.

After these transformations, a comprehensive correlation 
analysis was conducted to uncover relationships among the 
features. The analysis revealed in Figure 2 several notable 
findings. Age, for instance, showed a moderate positive 
correlation with both hypertension (correlation coefficient 0.28) 
and heart disease (0.26), suggesting that older patients are more 
likely to exhibit these conditions. Additionally, age exhibited 
a negative correlation with the children work type, reflecting 
demographic trends. The average glucose level showed a weak 
positive correlation with stroke risk (0.13), indicating that higher 
glucose levels may slightly elevate the risk of stroke. Similarly, 
BMI was found to have a weak positive association with both 
average glucose level (0.18) and hypertension (0.16). It was also 
observed that many of the one-hot encoded categorical features 
displayed inherent correlations, such as a strong negative 
correlation between the “ever married Yes” and “ever married 
No” columns. These interrelationships were further visualized 
using a heatmap of the correlation matrix.

Figure 2: Correlation Matrix HeatMap
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The observed correlations have significant implications for model 
performance. For instance, the presence of multicollinearity 
among highly correlated features, particularly among the one-
hot encoded variables, can complicate the ability of certain 
models, such as Logistic Regression, to accurately estimate the 
individual impact of each predictor.

This may necessitate additional feature selection or the 
application of regularization techniques to mitigate the effects 
of collinearity. Moreover, the relatively weak correlations 
between individual risk factors and the target variable (stroke) 
underscore the challenge of predicting stroke risk based on 
any single feature. This highlights the importance of utilizing 
machine learning models that can capture complex, non-linear 
interactions among multiple features, ultimately enhancing the 
accuracy and robustness of stroke risk prediction.

Feature Selection Results
The results of both RFE and LASSO regression are presented 
in Figure 3, ranking the features according to their importance 
scores. Based on the results, the most important feature in 
predicting stroke risk in hypertensive patients is age. The 
LASSO model identified unmanage as the only significant 
predictor, while the RFE highlighted additional features, 
including hypertension status, history of heart disease, average 
glucose level, marital status, type of work, type of residence, and 
smoking history. However, aggressive regularization of LASSO 
removed these features, suggesting that age alone carries the 
most predictive power. This finding is consistent with established 
clinical knowledge that stroke risk increases significantly with 
age due to vascular aging and accumulated comorbidities.

Figure 3: Feature Selection Results

The selected characteristics align with well-documented 
risk factors for stroke. Age is a primary determinant, as older 
individuals face increased arterial stiffness and increased 
likelihood of cardiovascular disease. Hypertension and heart 
disease are known contributors to stroke, as both conditions can 
lead to arterial damage and impaired blood flow to the brain. 
Although LASSO removed these features, their identification 
by RFE suggests that they may still hold value when analyzed 
together rather than in isolation.

Model Performance and Evaluation
Baseline Performance
The baseline performance results underscore the challenges of a 
severe class imbalance in our stroke risk prediction task. Although 
the overall accuracy for most models hovers around 95%, this 
metric is misleading given the pronounced imbalance between 
the non-stroke and stroke cases. For instance, while Logistic 
Regression achieves a high-Test AUC-ROC of 0.842798 and a 
CV AUC-ROC of 0.840920, its precision, recall, and F1-score are 
all 0, indicating that it completely fails to identify any stroke cases. 
Similar deficiencies are observed with SVM and KNN, which 
also report negligible recall despite high accuracy (see Figure 4).

Table 3: Baseline Model Performance (Without SMOTE)

Model CV AUC-
ROC

Test AUC-
ROC Accuracy Precision Recall F1-Score Log Loss Balanced 

Accuracy
Logistic Regression 0.840920 0.842798 0.951076 0.000000 0.00 0.000000 0.154490 0.500000
Random Forest 0.794333 0.771091 0.948141 0.363636 0.08 0.131148 0.410224 0.536399
Gradient Boosting 0.830453 0.831626 0.949119 0.250000 0.02 0.037037 0.165950 0.508457
Deep Neural Network 0.811861 0.827634 0.947162 0.250000 0.04 0.068966 0.166697 0.516914
SVM 0.635974 0.652346 0.951076 0.000000 0.00 0.000000 0.194087 0.500000
Naive Bayes 0.813780 0.799033 0.823875 0.157895 0.60 0.250000 0.762689 0.717695
KNN 0.643192 0.618313 0.949119 0.375000 0.06 0.103448 1.088370 0.527428

In contrast, models such as Random Forest and Gradient 
Boosting demonstrate moderate discriminative ability, with 
Random Forest achieving a CV AUC-ROC of 0.794333 and a 
Test AUC-ROC of 0.771091, and Gradient Boosting recording 
0.830453 and 0.831626, respectively. However, both models 
exhibit very low recall (0.08 for Random Forest and 0.02 for 
Gradient Boosting), with only moderate precision (0.363636 
and 0.250000, respectively) and F1-scores of 0.131148 and 
0.037037. The Deep Neural Network, while obtaining a Test 
AUC-ROC of 0.827634, shows similar shortcomings, with 
recall at only 0.04 and an F1-score of 0.068966 (see Table3). 
These metrics indicate that even when models can separate the 
classes to some extent (as reflected by AUC-ROC), they remain 
largely insensitive to the minority (stroke) class at the default 

decision threshold (refer to the confusion matrices in Figures 5a 
and 5b).

Figure 4: Baseline ROC Curves
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Notably, Na¨ıve Bayes distinguishes itself from the other 
models by achieving a recall of 0.60, coupled with a balanced 
accuracy of 0.717695, despite having a lower overall accuracy 
of 0.823875. This suggests that Na¨ıve Bayes is comparatively 
more adept at identifying stroke cases, albeit at the cost of 
reduced performance on the majority class. These discrepancies, 
particularly the consistently low balanced accuracy (hovering 
around 0.5 for most models), indicate that many of the models 
are performing no better than random guessing when it comes 
to detecting stroke cases. For further details, see the confusion 
matrices for KNN and Logistic Regression in Figure 11, for 
Naıve Bayes and Random Forest in Figure 12, and for SVM in 
Figure 13.

Figure 5: Confusion Matrices for Deep Neural Network and 
Gradient Boosting Machine Models

Figure 6: Confusion Matrices for KNN and Logistic Regression 
Models

Figure 7: Confusion Matrices for Naive Bayes and Random 
Forest Models

Figure 8: Confusion Matrix for SVM

Overall, these baseline results highlight the critical pitfalls of 
relying solely on conventional performance metrics in the 
presence of severe class imbalance. High accuracy and even 
moderate AUC-ROC scores are insufficient when the minority 
class—stroke cases in this instance—is nearly ignored. The 
observed near-zero recall and F1-scores for most models 
underscore the urgent need for class imbalance remediation 
techniques, such as SMOTE, to enhance the sensitivity and 
balanced accuracy of stroke risk prediction models.

Model Performance After Handling Class Imbalance
After applying SMOTE, we observe notable improvements in 
the models’ abilities to detect stroke cases (the minority class), 
albeit with varying degrees of trade-offs in precision and overall 
accuracy. As shown in Table 4 and evident from the confusion 
matrices (see Figures 11 and 12), Logistic Regression now 
achieves a recall of 0.80—a substantial increase from its near-
zero baselines. This heightened sensitivity, however, comes at the 
cost of reduced precision (0.14) and overall accuracy (0.75). A 
similar pattern emerges in Na¨ıve Bayes (recall = 0.78, precision 
= 0.0871) and SVM (recall = 0.72, precision = 0.1254), both of 
which focus more heavily on identifying stroke cases but also 
misclassify a significant number of non-stroke samples.

(a) Deep Neural Network Model

(a) Naive Bayes

(a) KNN

(b) Gradient Boosting Machine

(b) Random Forest

(b) Logistic Regression Model

(a) SVM

Table 4: Performance after applying SMOTE

Model CV AUC-
ROC

Test AUC-
ROC Accuracy Precision Recall F1-Score Log Loss Balanced 

Accuracy
Logistic Regression 0.850289 0.843930 0.750489 0.140351 0.80 0.238806 0.487804 0.773971
Random Forest 0.972465 0.748827 0.866928 0.122807 0.28 0.170732 0.520827 0.588560
Gradient Boosting 0.953310 0.787099 0.796477 0.134259 0.58 0.218045 0.347898 0.693807
Deep Neural Network 0.930009 0.778086 0.794521 0.122642 0.52 0.198473 0.444762 0.664321
SVM 0.895057 0.805741 0.740705 0.125436 0.72 0.213650 0.434875 0.730885
Naive Bayes 0.819059 0.798827 0.589041 0.087054 0.78 0.156627 1.669486 0.679609
KNN 0.934266 0.700864 0.801370 0.099476 0.38 0.157676 2.694022 0.601523

In contrast, Random Forest and KNN exhibit moderate recall gains compared to their baseline performance. Random Forest improves 
its recall to 0.28 (from effectively zero at baseline) while maintaining a high accuracy of 0.87, and KNN increases its recall to 0.38, 
with a balanced accuracy of 0.60. Although these improvements are less dramatic than those of Logistic Regression or Na¨ıve 
Bayes, they offer a more tempered compromise between sensitivity and specificity. Gradient Boosting and the Deep Neural Network 
likewise show recall values of 0.58 and 0.52, respectively, indicating that SMOTE enables them to capture more stroke cases than 
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before without fully sacrificing their ability to correctly classify 
non-stroke individuals (see Table 4).

Figure 9: ROC Curves After SMOTE

A key measure that captures these trade-offs is balanced 
accuracy, which averages sensitivity across both classes. 
Logistic Regression stands out with a balanced accuracy of 0.77, 
reflecting its ability to identify a substantial proportion of stroke 
patients while still correctly classifying a fair share of non-
stroke individuals. Na¨ıve Bayes achieves a balanced accuracy 
of 0.68, while SVM records 0.73—both notably higher than 
their baseline figures. Models like Random Forest and KNN 
remain comparatively lower on balanced accuracy (0.59 and 
0.60, respectively), but they retain higher overall accuracy. This 
highlights the clinically relevant tension between missing fewer 
stroke cases and avoiding an excessive false-positive rate.

Figure 10: Confusion Matrices for Deep Neural Network and 
Gradient Boosting Machines

Figure 11: Confusion Matrices for KNN and Logistic Regression 
Models

Figure 12: Confusion Matrices for Naive Bayes and Random 
Forest Models

Figure 13: Confusion Matrix for SVM.

Examining the confusion matrices of the models provide 
further insights. For instance, the confusion matrix for Logistic 
Regression (see Figure 11) reveals that many non-stroke cases 
are misclassified, indicating that its improved recall (80% of 
stroke cases identified) comes at the expense of flagging many 
non-stroke patients as high risk. Similarly, the confusion matrix 
for Na¨ıve Bayes (see Figure 12) shows that, while a high 
proportion of stroke cases are correctly identified, numerous 
non-stroke patients are incorrectly labeled as stroke. In real-
world settings, such an influx of false positives may strain 
clinical resources, although missing stroke cases can have even 
more severe consequences.

From a probabilistic standpoint, the AUC-ROC values further 
underscore these dynamics. Logistic Regression retains the 
highest Test AUC-ROC (0.843930), reflecting its ability to 
rank-order stroke versus non-stroke individuals effectively. 
SVM achieves an AUC-ROC of 0.805741, indicating solid 
discrimination when thresholds are adjusted. Random Forest 
(0.748827) and KNN (0.700864) remain lower in AUC-ROC 
but compensate with higher overall accuracy and fewer false 
positives relative to their baseline performance, as illustrated in 
Table 4 and Figure 9.

Overall, SMOTE has demonstrably enhanced minority-class 
detection across the board, rectifying the near-complete failure 
to identify stroke cases observed in the baseline models. Yet, 
the cost is evident in reduced precision and, for some models, 
diminished overall accuracy. As a result, further calibration may 
be necessary, such as threshold tuning, cost-sensitive learning, 
or ensemble methods, to strike an optimal balance between 
capturing high-risk individuals and avoiding an overabundance 
of false alarms. By refining these parameters, healthcare 
providers can align model predictions with clinical priorities, 
ultimately improving stroke risk prediction for hypertensive 
patients.

Model Interpretability with SHAP
After applying SMOTE, the Logistic Regression model emerged 
as a top performer with the highest Test AUCROC (0.84393), 
recall (0.80), F1-score (0.23881), and balanced accuracy 
(0.77397), indicating its strong capability in distinguishing 
classes and handling imbalanced data. Additionally, Gradient 
Boosting demonstrated excellent performance with the lowest log 
loss (0.34792), and Random Forest achieved the highest overall 

(a) Deep Neural Network Model (b) Gradient Boosting

(a) KNN (b) Logistic Regression

(a) KNN (b) Logistic Regression

(a) SVM
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accuracy (0.86399), making both models strong candidates 
for further analysis. Given their superior performance across 
multiple metrics, these models were selected for subsequent 
SHAP analysis to enhance interpretability by elucidating feature 
contributions in the predictive process.

Figure 14: SHAP Summary Plot for Gradient Boosting

Figure 14 shows the SHAP Summary Plot for Gradient 
Boosting. From the SHAP summary plots, we observe that age, 
hypertension, and average glucose level consistently emerge 
as key predictors in all three models. In the Gradient Boosting 
plot, these top features exhibit a large spread of SHAP values, 
highlighting their substantial effect on the model’s output. High 
age or elevated glucose values (represented in red) push the 
prediction toward stroke, while lower values (in blue) shift it 
away from stroke. Additional factors such as work type (self-
employed, private, children) and marital status (ever married or 
not) also appear, although they contribute less strongly than the 
top numeric features.

Figure 15: SHAP Summary Plot for Logistic Regression

Figure 15 presents the SHAP Summary Plot for Logistic 
Regression. The Random Forest plot, shown in Figure 16, 
focuses heavily on age and hypertension, illustrating that this 
model splits the data primarily along these dimensions. Older, 
hypertensive patients have a markedly higher probability of 
stroke, whereas younger, non-hypertensive patients are more 
likely predicted to be stroke-free. This bifurcation suggests 
that Random Forest is particularly dependent on these two risk 
factors, which may partially explain its high accuracy on the 
majority class but relatively weaker recall.

The Logistic Regression summary plot distributes feature 
influence more evenly. Age, average glucose level, and 
hypertension again stand out, but categorical variables, such 

as work type and smoking status, also exert noticeable shifts in 
stroke probability. For example, a patient who has never smoked 
generally sees a negative SHAP contribution (blue), reducing 
stroke risk, while certain work types (e.g., self-employed) 
may slightly increase it. This additive effect is characteristic of 
logistic regression’s linear nature, making it straightforward to 
interpret how each variable shifts the model’s output.

Figure 16: SHAP Summary Plot for Random Forest In contrast

Overall, the SHAP analyses confirm the importance of well-
known clinical risk factors (age, hypertension, and glucose 
levels) while revealing how each model incorporates additional 
demographic and lifestyle variables. These insights align with 
the earlier performance metrics. Logistic Regression excels 
in minority-class detection partly because it integrates a 
broader set of risk factors, Random Forest prioritizes age and 
hypertension in a way that bolsters accuracy but can hamper 
recall, and Gradient Boosting strikes a balance with well-
calibrated probability estimates. By understanding these model-
specific patterns, clinicians and researchers can refine feature 
engineering, adjust decision thresholds, or combine methods 
to optimize both predictive performance and interpretability in 
stroke risk prediction.

Discussion
The findings of this study highlight the considerable potential 
of machine learning (ML) to improve stroke risk prediction for 
hypertensive patients, addressing the limitations associated with 
conventional risk assessment tools such as the Framingham Risk 
Score and CHADS-VASc. This research represents a significant 
step forward in the management of cardiovascular health, as early 
and accurate identification of high-risk individuals can facilitate 
timely interventions and improve preventive care strategies.

A key strength of this study is the incorporation of explainability 
frameworks, particularly SHapley Additive exPlanations 
(SHAP), which provide transparent insights into how individual 
features influence model predictions. This level of interpretability 
is essential to foster clinical trust and promote the integration 
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of ML-based tools into routine medical practice. In particular, 
SHAP analysis underscored the predictive importance of 
factors such as age, cholesterol levels, and lifestyle behaviors. 
While these findings align with established clinical knowledge, 
the model also identified subtle, non-linear interactions that 
conventional statistical methods may fail to capture, further 
demonstrating the added value of ML in stroke risk assessment.

Despite the promising potential of ML-driven stroke risk 
prediction, several challenges must be addressed to ensure 
its effective implementation in clinical practice. One major 
limitation is the quality and availability of the data, as incomplete, 
unbalanced, or biased datasets can undermine model accuracy 
and limit generalizability. In addition, integrating ML models 
into routine healthcare workflows requires careful consideration 
of usability, interoperability with existing systems, and 
adherence to regulatory guidelines. Clinicians must be equipped 
with adequate training and decision-support tools to effectively 
interpret and act upon machine learning-generated predictions.

Ethical considerations also play a crucial role in deploying ML-
based models in healthcare. Ensuring fairness and mitigating 
algorithmic bias is essential, particularly when applying these 
models across diverse populations, to prevent disparities in 
patient care. Future research should prioritize external validation 
in larger, more diverse cohorts, explore the integration of real-
time data from wearable health devices, and assess the long-term 
clinical utility of these predictive models. Collaborative efforts 
among researchers, healthcare professionals, and policymakers 
will be critical in addressing these challenges and driving 
progress in precision medicine.

Despite these hurdles, the findings of this study highlight the 
transformative potential of ML in enhancing stroke risk prediction 
and prevention. By bridging the gap between predictive analytics 
and actionable clinical insights, MLbased models can support 
more personalized and proactive healthcare interventions. This 
research contributes to the growing body of evidence supporting 
the role of explainable AI in medicine, paving the way for 
innovative approaches to reducing the global burden of stroke 
and improving patient outcomes. Future work should continue 
refining these models, addressing implementation challenges, 
and exploring their broader applicability in cardiovascular and 
chronic disease management. Moreover, using a comprehensive 
dataset and advanced ML methodologies, this study developed 
predictive models that demonstrated superior performance 
compared to traditional risk assessment tools, such as the 
Framingham Stroke Risk Profile and the CHA2DS2-VASc score, 
reinforcing the value of ML in modern clinical decision-making. 
This also validates the superiority of ML in capturing non-linear 
relationships between risk factors, aligning with the recent 
literature on stroke risk prediction [11]. Our findings emphasize 
that ML models, particularly ensemble methods, can detect subtle 
interactions between risk factors that traditional models fail to 
capture. Compared to conventional logistic regression models, 
GBM demonstrated significantly higher predictive accuracy, 
supporting the growing body of evidence favoring ML in the 
assessment of stroke risk [34] The use of SHAP values for model 
interpretability addresses the challenge of black-box ML models 
in healthcare. By applying SHAP values, our findings align 
with previous studies that highlight the role of explainable AI in 

medical diagnostics [35,36]. Furthermore, integrating temporal 
trends into our risk assessment model improves predictive 
robustness, consistent with previous research demonstrating the 
importance of time-dependent cardiovascular risks in clinical 
decision-making [37,38].

Machine learning roles in optimizing electronic health records 
(EHRs) for predictive modeling has been underscored in recent 
research [39]. Our study builds on this by integrating diverse 
patient attributes, demonstrating how structured EHR data 
can improve risk prediction for stroke prevention. Moreover, 
performance evaluation of ML models in cause-of-death 
determination has shown promising results in public health 
applications [40]. These findings underscore the potential of 
machine learning (ML) to enhance traditional epidemiological 
approaches by capturing complex patterns in stroke risk 
assessment. However, challenges such as data imbalance remain 
a significant concern. The disproportionately lower prevalence 
of stroke cases compared to nonstroke cases can introduce 
bias, potentially compromising model performance. To address 
this issue, innovative data augmentation strategies, including 
generative adversarial networks (GANs), have been explored 
to enhance model robustness, improve classification accuracy, 
and ensure a more representative distribution of stroke cases in 
predictive modeling [40]. Furthermore, model validation across 
diverse populations is necessary to ensure generalizability 
and minimize dataset bias [41]. Additionally, ML has shown 
an efficacy in improving diagnostic precision in rehabilitation 
medicine, particularly in conditions such as lumbar disc 
herniation [42]. Integrating ML with real-world data sources 
could further enhance stroke risk prediction.

Conclusion
This study investigates the application of machine learning 
(ML) models for stroke risk prediction in hypertensive patients, 
using SHapley Additive exPlanations (SHAP) to enhance model 
interpretability. Our findings indicate that ML algorithms, 
particularly ensemble-based approaches, demonstrate strong 
predictive performance in identifying individuals at elevated 
risk of stroke. The integration of SHAP explainability provided 
crucial insights into the influence of key clinical features—
including blood pressure levels, age, cholesterol levels, and 
lifestyle factors—on stroke risk. This transparency not only 
aligns with established clinical knowledge but also enhances the 
model’s practical utility for healthcare providers. By bridging 
the gap between complex predictive analytics and actionable 
clinical insights, this research underscores the transformative 
potential of ML in early stroke risk assessment and personalized 
intervention strategies for hypertensive patients. The results 
highlight the effectiveness of ensemble learning methods, 
particularly gradient boosting models (GBM), in refining risk 
prediction while maintaining interpretability through SHAP-
based feature attribution. Future studies should explore the 
integration of multimodal data sources, such as neuroimaging, 
genetic biomarkers, and continuous monitoring of data to further 
enhance predictive accuracy. Furthermore, rigorous validation 
using real-world hospital data has reinforced the potential of ML 
in clinical decision-making and hospital-based risk assessments. 
Addressing challenges such as model generalizability, data 
heterogeneity, and ethical considerations will be crucial in 
translating ML-driven risk prediction from research settings 
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to routine clinical practice. Moving forward, future work will 
focus on validating the model across diverse populations, 
incorporating real-time patient data, and ensuring adaptability 
to different healthcare environments. This study contributes to 
the growing body of evidence supporting the role of explainable 
AI in healthcare, paving the way for more informed decision-
making and improved patient outcomes. By embracing AI-
driven methodologies and refining ML-based risk assessment 
frameworks, healthcare systems can enhance stroke prevention 
strategies, ultimately reducing the global burden of stroke.
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