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Satellite and AI-Driven Rainfall Nowcasting Framework for Climate-Smart 
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ABSTRACT
Accurate precipitation forecasting is vital for Sahelian countries like Burkina Faso, where rainfed agriculture drives the economy and 
erratic rainfall complicates water management and disaster preparedness. This study develops and evaluates three machine learning 
models—CatBoost, CNN, and a hybrid CNN-LSTM—for precipitation nowcasting using multi-source satellite data. Leveraging Google 
Earth Engine, we integrated GPM-IMERG (V07)(calibrated precipitation), GOES-16 (cloud and moisture indices), elevation, and 
CHIRPS(calibrated precipitation) data. GPM-IMERG (V07) was selected over CHIRPS based on higher correlation with ground-based 
observations from nine weather stations over 2010–2020. Model training used data from July 10, 2017, to December 31, 2021, with testing 
and validation from January 1, 2022, to June 21, 2024. GPM-IMERG (V07) outperformed CHIRPS in Probability of Detection (POD) 
and Critical Success Index (CSI). CatBoost achieved an RMSE of 1.23, MAE of 0.42, and POD of 84%, while CNN recorded an RMSE 
of 1.29, MAE of 0.32, and POD of 57% (threshold 0.2). The CNN-LSTM hybrid effectively captured spatial and temporal precipitation 
patterns. This research provides a reproducible framework that enhances forecasting tools for West Africa, with significant implications 
for supporting disaster preparedness, and agricultural planning.
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Introduction
Climate change is intensifying extreme weather events like 
droughts and floods, severely impacting agriculture, economies, 
and livelihoods, particularly in tropical and sub-Saharan regions 
like Burkina Faso, where rainfed agriculture sustains over 22 
million people across 274,200 km². In this Sahelian country, 
the West African monsoon drives a short rainy season (June–
September), with precipitation varying from 300 mm in the 
northern Sahelian zone to over 1200 mm in the southern Sudanian 
zone, creating complex spatial and interannual variability [1,2]. 
This variability, coupled with sparse ground-based observations, 
limits the accuracy of traditional numerical weather prediction 

(NWP) models, such as ECMWF and GFS, for very short-term 
rainfall nowcasting critical for food security, water management, 
and disaster preparedness.

Recent advances in satellite remote sensing and artificial 
intelligence (AI) offer promising solutions. Using Google Earth 
Engine, this study integrates data from GPM-IMERG (V07), 
selected over CHIRPS for its higher correlation with ground-
based observations from nine weather stations (2010–2020), and 
GOES-16 (cloud and moisture indices), alongside elevation data. 
We develop and evaluate three AI models—CatBoost, CNN, and 
a hybrid CNN-LSTM—trained on data from July 10, 2017, to 
December 31, 2021, and tested/validated from January 1, 2022, 
to June 21, 2024. CNNs excel in extracting spatial features 
from satellite imagery, while LSTM models capture temporal 
dependencies, enabling accurate nowcasting. 
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The primary aim of this research is to develop a robust 
precipitation nowcasting system tailored to Burkina Faso’s 
specific conditions by leveraging synergies between multi-
source satellite data and advanced machine learning techniques.
 
Objectives
The specific objectives are:
•	 Evaluate and select the most suitable satellite precipitation 

products for the study region.
•	 Develop a methodology for integrating multi-source 

satellite data, including precipitation observations, cloud 
imagery, and topographic data.

•	 Design and implement three complementary machine 
learning model architectures.

•	 Comparatively evaluate the performance of these models on 
independent data.

•	 Provide recommendations for operationalizing the 
forecasting system.

The remainder of this article is structured as follows. Section 
2 introduces the study area and data sources, while Section 3 
details the methodological framework. Section 4 outlines the 
evaluation criteria and performance metrics employed, and 
Section 5 reports the main results. Finally, Section 6 provides 
concluding remarks, highlighting key findings and discussing 
their implications for water resource management and disaster 
preparedness in Burkina Faso.

Study Area
Geographical and Climatic Characteristics of Burkina Faso
Burkina Faso is located between 9°20' and 15°05' North latitude 
and between 2°20' East and 5°30' West longitude. The country 
features a generally flat topography with an average elevation of 
400 meters, punctuated by some plateaus and escarpments. This 
relatively uniform terrain influences atmospheric circulation 
regimes and precipitation patterns.The climate of Burkina Faso 
is dry tropical, characterized by two main seasons: a dry season 
from November to May and a rainy season from June to October 
[3]. Climatic variability is primarily driven by the seasonal 
movements of the Intertropical Convergence Zone (ITCZ), 
which determines the extent of moist air masses penetrating 
from the Atlantic Ocean.The country’s three agro-climatic zones 
exhibit distinct characteristics [4]:

•	 Sahelian zone (north): rainy season from July to September.
•	 Sudano-Sahelian zone (center): rainy season from June to 

October.
•	 Sudanian zone (south): rainy season from May to October.

Figure 1 illustrates the geographic boundaries of Burkina Faso 
along with its three agro-climatic zones: Sahelian, Sudano-
Sahelian, and Sudanian.

Meteorological Observation Infrastructure
Burkina Faso’s national meteorological observation network, 
managed by the National Meteorology Agency (ANAM), 
comprises approximately around two hundred seventy synoptic 
and climatological stations unevenly distributed across the 
country [5,6]. The limited spatial coverage and occasionally 
inconsistent data quality pose significant constraints for 

developing forecasting models based solely on in-situ 
observations.

For this study, we selected nine meteorological stations 
representative of the different climatic zones, with continuous 
and reliable time series data over the period 2010–2020. These 
stations, located in Ouagadougou, Bobo-Dioulasso, Ouahigouya, 
Fada N’Gourma, Gaoua, Dori, Bogandé, Boromo, and Dédougou, 
serve as the reference network for validating satellite products.

Figure 1: Map showing the geographic location of Burkina Faso 
and its three agro-climatic zones: Sahelian, Sudano-Sahelian, 
Sudanian.

Figure 2: Map of meteorological stations distribution

Figure 3: Synoptic station of Bobo-Dioulasso

Satellite Data
Selection of Precipitation Products
Selecting the most suitable satellite precipitation product is a 
critical step in our methodology. 
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We Compared Two Widely used Products in the Scientific 
Community
GPM-IMERG (Integrated Multi-satellitE Retrievals for GPM) 
Version 07 [7]: Spatial Resolution: 0.1° × 0.1° (approximately 
10 km)
Temporal Resolution: 30 minutes
Temporal Coverage: Since March 2014
Algorithm: Fusion of radar and passive microwave data from 
multiple satellites
Latency: Research product (3–4 months), near-real-time product 
(4–6 hours)

CHIRPS (Climate Hazards Group InfraRed Precipitation with 
Station data) Version 2.0 [8]: Spatial Resolution: 0.05° × 0.05° 
(approximately 5 km)
Temporal Resolution: Daily
Temporal Coverage: Since 1981
Algorithm: Combination of thermal infrared observations, 
microwave data, and station data
Advantages: Long time series, calibration with station data

The comparative evaluation of these products was conducted 
over the period 2010–2020 using several statistical metrics:
Pearson Correlation Coefficient (r)
Root Mean Square Error (RMSE): 
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where yi represents satellite data, ŷ represents observed data, n 
represents the number of all data, TP denotes true positives, FP 
denotes false positives, and FN denotes false negatives.

Cloud Imagery and Atmospheric Variables
The GOES-16 satellite (positioned at ~ 75.2°W in a geostationary 
orbit) provides continuous coverage over West Africa using its 
Advanced Baseline Imager (ABI). We selected the 16 spectral 
bands from the MCMIPF (Multi-band Cloud & Moisture 
Imagery Full-Disk) product:

Visible and Near-Infrared Bands (reflective, bands 1-6)
Band 1 (0.45-0.49 µm): “Blue” – aerosols, thin clouds
Band 2 (0.59-0.69 µm): “Red” – visibility, fog, cloud/ground 
contrast
Band 3 (0.846-0.885 µm): “Veggie” – vegetation, snow/ice
Band 4 (1.371-1.386 µm): “Cirrus” – cirrus clouds detection
Band 5 (1.58-1.64 µm): Snow/Ice, cloud-top phase
Band 6 (2.225-2.275 µm): Cloud particle size, cloud/ice phase, 
snow cover

Infrared / Emissive Bands (bands 7-16)
Band 7 (~3.80-4.00 µm): shortwave IR window – hot spots, fire 
detection, low fog/stratus
Band 8 (~5.77-6.60 µm): upper tropospheric water vapor
Band 9 (~6.75-7.15 µm): mid-tropospheric water vapor
Band 10 (~7.24-7.44 µm): lower/mid tropospheric water vapor
Band 11 (~8.3-8.7 µm): cloud top phase, cloud temperature
Band 12 (~9.42-9.80 µm): ozone
Band 13 (~10.1-10.6 µm): clean longwave IR window – surface 
& cloud properties
Band 14 (~10.8-11.6 µm): IR longwave window – surface / 
cloud IR emission
Band 15 (~11.8-12.8 µm): “dirty” longwave IR window – 
sensitivity to moisture, thinner clouds
Band 16 (~13.3 µm): CO₂ longwave IR – air temperature profile, 
cloud height, etc.

These bands provide critical information on cloud properties, 
atmospheric moisture, trace gases (ozone, CO₂), surface/ cloud 
temperature, and are well suited for precipitation-nowcasting 
over Burkina Faso.

Topographic Data
Altitude data were obtained from the Multi-Error-Removed 
Improved-Terrain (MERIT) Digital Elevation Model (DEM), 
developed by the University of Tokyo [10]. This DEM offers 
a spatial resolution of 3 arc-seconds (approximately 90 m) 
and is one of the most accurate datasets currently available. 
Topographic data are critical as they significantly influence 
precipitation processes through orographic effects, even in a 
relatively flat country like Burkina Faso.

Methodology
Technical Architecture and Computing Infrastructure
Google Earth Engine
Google Earth Engine (GEE) serves as the central platform of our 
processing infrastructure. This cloud-based solution provides 
direct access to extensive satellite image catalogs (e.g., GPM for 
precipitation and GOES-16 for cloud cover) without the need 
for prior downloading [11]. The main strengths of GEE include
•	 Instant Data Access: Images are directly retrieved from 

catalogs (GPM, GOES-16, DEM) and combined to create 
the required datasets.

•	 Distributed Computing Power: Processing tasks 
(temporal filtering, extraction of 5×5 patches, generation 
of time series) are parallelized on Google’s infrastructure, 
significantly accelerating data preparation.

•	 Flexible APIs: Both Python and JavaScript interfaces enable 
automation of pipeline steps such as fixed-point generation, 
training sample creation, and export to .npz format.

•	 Integrated Visualization Tools: GEE facilitates quality 
control of images and patches prior to export, ensuring the 
reliability of the datasets used for model training.

Processing Pipeline with Apache Beam
The large data volume (several terabytes) requires a robust 
and scalable processing pipeline. To address this challenge, 
we designed an architecture based on Apache Beam, a unified 
programming model for batch and streaming data processing 
[12]. The key advantages of Apache Beam are:
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Portability: The same code can be executed on multiple runners 
(e.g., Google Dataflow, Apache Spark, Apache Flink).

Scalability: Processing is automatically distributed across 
multiple machines to handle large-scale datasets.

Reliability: Failures are managed transparently, with built-in 
mechanisms for retrying and resuming incomplete tasks.

Monitoring: Real-time tracking of pipeline execution and 
performance metrics.

The pipeline consists of the following steps:
•	 Data extraction from Google Earth Engine (GEE) catalogs.
•	 Spatial and temporal filtering of satellite imagery.
•	 Alignment of spatial and temporal resolutions.
•	 Application of transformations and normalizations.
•	 Export to optimized storage formats (e.g., TFRecord, 

Parquet, or. npz for deep learning workflows).

Data Preparation and Preprocessing
Spatial and Temporal Harmonization
Integrating data from multiple sources requires rigorous 
harmonization of spatial and temporal resolutions:

Spatial Harmonization
Reprojection of all data to the coordinate of study area.
Resampling to a common grid of 0.1° × 0.1° (approximately 10 
km).
Masking of oceanic pixels and border regions.

Temporal Harmonization
Synchronization of all products to an hourly basis.
Aggregation of high-frequency data (30-minute intervals) to 
hourly resolution.
Application of sliding windows to create training sequences.

Data Quality Management
A multi-level quality control system was implemented:

Level 1 - Physical Consistency Checks:
Verification of physical bounds.
Detection of outliers using statistical analysis.
Cross-validation between correlated variables .

Level 2 - Spatial Consistency Checks:
Detection of abnormal spatial discontinuities.
Comparison with reference climatologies.
Validation against meteorological station observations.

Level 3 - Temporal Consistency Checks:
Detection of breaks in time series.
Analysis of statistical stationarity.
Validation of seasonal cycle continuity.

Sampling Strategy
Creating a balanced and representative training dataset is a 
major challenge due to the naturally imbalanced distribution of 
precipitation intensities (many low-intensity events, few intense 
events).

Precipitation and Elevation Discretization
Continuous precipitation values were clamped between 0 and 30 
mm/h and discretized into 31 uniform classes. Elevation values 
were similarly clamped between 0 and 749 m, which corresponds 
to the highest elevation in Burkina Faso, and discretized into equal 
bins. A unique class identifier was then created by combining 
precipitation and elevation bins to ensure that sampling accounted 
for both precipitation intensity and topography. This approach 
mitigates the over-representation of low-elevation regions. Figure 
4 illustrates the resulting discretization.

Stratified Sampling
The stratifiedSample function in Google Earth Engine (GEE) 
was employed to [13]:
Perform proportional sampling within each class.
Preserve the spatial distribution of events.
Maintain seasonal variability.
Minimize sampling bias.

Sampling parameters were optimized to produce a sufficiently 
large dataset, approximately balanced across the combined 
classes, suitable for training deep learning models for 
precipitation nowcasting.

Figure 4: Precipitation intensity classes for balanced dataset 
generation

Normalization and standardization
Z-score Normalization
For each variable Xi, normalization is performed using the 
formula: 

Zi=(Xi−μi)/σi.

Where μi and σi  are the mean and standard deviation, calculated 
only on the training dataset to prevent data leakage. This method 
was primarily used because many machine learning algorithms 
(e.g., neural networks, CatBoost, …) are sensitive to the scale of 
input variables. Z-score normalization centers the data around 
zero and scales it to comparable ranges, which improves training 
efficiency and stabilizes convergence.

Alternative Methods
•	 Robust Normalization
For variables with non-Gaussian distributions or persistent 
outliers, a robust normalization using the median and interquartile 
range can be applied :
Zi = (Xi−mediani)/IQRi.
Where IQR represents the interquartile range.

•	 Quantile Normalization
For certain variables with multi-modal distributions, a quantile 
transformation can map the empirical distribution to a uniform 
distribution.
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These alternative methods were considered for specific cases but 
were not applied to the majority of variables in this study.

Data Division
The temporal division of data respects the sequential nature of 
meteorological phenomena while preventing data leakage:

Training Period: July 10, 2017 – December 31, 2021 (80% of the 
data)Start date chosen based on the full availability of all satellite 
products. Includes four complete seasons to capture interannual 
variability. Balanced representation of normal, dry, and wet years.

Testing and Validation Period: January 1, 2022 – June 21, 2024 
(20% of the data)Fully independent period for final evaluation. 
Includes extreme weather events to test model robustness.
Covers two complete rainy seasons.

Model Architecture
To gain a comprehensive understanding of our modeling 
framework, we refer to the architectural diagram presented in 
Figure 5. This diagram provides a detailed visual representation 
of the different stages of our methodology. The following 
sections describe the models employed in our research.	  

Figure 5: Overview of the proposed modeling framework.

CatBoost Model
CatBoost (Categorical Boosting) is a modern evolution of gradient 
boosting algorithms, particularly suited for heterogeneous data 
and categorical features [14].

Specific Advantages for Our Application
Native handling of categorical features (climatic zones, cloud 
types).
Robustness to outliers through the use of symmetric trees.
Reduction of overfitting via ordered boosting.

Detailed Architecture
python
model_params = {
    'iterations': 100,
    'depth': 8,
    'learning_rate': 0.1,
    'l2_leaf_reg': 3,
    'bootstrap_type': 'Bayesian',
    'bagging_temperature': 1,
    'random_seed': 42,
    'allow_writing_files': False,
    'devices': '0:1'
}

Hyperparameter Optimization:
Optimization follows a Bayesian search strategy with temporal 
cross-validation:
Coarse Search: Over a broad parameter space (200 
configurations).
Fine Search: Around identified local optima (100 configurations).
Final Validation: On a temporal holdout set.

Optimization metrics include:
Mean Absolute Error (MAE) weighted by intensity.
Spearman correlation coefficient.
POD for detecting events >= 0,2 mm/h.

Hybrid CNN-LSTM Model
This architecture combines the complementary strengths of 
convolutional neural networks (CNNs) for spatial feature 
extraction and recurrent neural networks (LSTMs) for modeling 
temporal dependencies [15].

CNN Architecture: The convolutional component consists of 
three successive convolution blocks:
Bloc 1: Conv2D(32, 3×3) → BatchNorm → ReLU → 
MaxPool2D(2×2)
Bloc 2: Conv2D(64, 3×3) → BatchNorm → ReLU → 
MaxPool2D(2×2)  
Bloc 3: Conv2D(128, 3×3) → BatchNorm → ReLU → 
GlobalAveragePooling

LSTM Architecture: The recurrent component processes 
extracted features over 24-hour temporal sequences:
LSTM(256 units) → Dropout(0.3) → Dense(128) → ReLU → 
Dropout(0.2) → Dense(1)

Training Strategy
Optimizer: Adam with adaptive learning rate (0.001 → 0.0001)
Loss Function: Huber Loss (robust to outliers)
Regularization: L2 (0.001) + Dropout (0.2–0.3)
Batch Size: 100
Epochs: 100 with early stopping 

Data Augmentation Techniques
Random rotation of spatial patches (±15°)
Spatial translation (±2 pixels)
Gaussian noise on inputs (σ = 0.01)
Mixup between samples of the same class

CNN Model
This architecture fully leverages the capabilities of modern 
convolutional neural networks for spatial regression [16].

Architectural Inspiration
The design is inspired by pre-trained models from Hugging 
Face, adapted for our meteorological regression task. The input 
consists of a small spatial patch (5×5) with 52 channels, and the 
output is two predicted precipitation maps (5×5×2):

Input(5×5×52) → 
ConvBlock1(32, 3×3, s=1) → 
ConvBlock2(64, 3×3, s=1) → 
ConvBlock3(128, 3×3, s=1) → 
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ConvBlock4(256, 3×3, s=1) → 
ConvBlock5(512, 3×3, s=1) → 
Conv2D(2, 1×1, s=1) 
Output: (5×5×2)

Optimized Convolution Blocks
Each ConvBlock integrates modern deep learning techniques to 
maximize representational capacity while keeping the number of 
parameters manageable :

ConvBlock(filters, kernel_size)
    Conv2D(filters, kernel_size, s=1, padding="same")
    → BatchNormalization
    → Swish activation
    → DepthwiseConv2D (to reduce parameter count)
    → BatchNormalization
    → Swish activation
    → SE-block (Squeeze-and-Excitation)
   

The loss is defined as Smooth L1, combining the robustness of 
L1 loss to outliers with the differentiability of L2 loss, making it 
particularly well-suited for precipitation regression tasks.

SmoothL1(y_true, y_pred, β=1.0):
    error = |y_true - y_pred|
    return where(error < β, 0.5 * error² / β, error - 0.5 * β)

Advanced Optimization Strategies:
Optimizer: AdamW with weight decay (0.01)
Learning Rate Scheduling: Cosine annealing with warm restarts

Evaluation and Performance Metrics
Regression Metrics
Mean Absolute Error (MAE):
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Classification Metrics (Rain Event Detection)
Confusion Matrix for Different Thresholds
•	 Thresholds 0.1 mm/h : Detection of precipitation
•	 Thresholds 1.0 mm/h : Significant precipitation  

Derived Metrics

POD(Probability Of Detection): 
TPPOD

TP FN
=

+
 

FAR (False Alarm Ratio): 
FPFAR

TP FP
=

+
  

CSI (Critical Success Index): 
TPCSI

TP FP FN
=

+ +
 

Accuracy: TP FP
TP FP FN TN

+
+ + +

Results
Satellite products evaluation
The evaluation of satellite precipitation products was 
conducted to select the most suitable dataset for Burkina Faso’s 
precipitation nowcasting. Two products, GPM-IMERG (V07) 
and CHIRPS (V2.0), were compared over the period 2010–2020 
using ground-based observations from nine meteorological 
stations (Ouagadougou, Bobo-Dioulasso, Ouahigouya, Fada 
N’Gourma, Gaoua, Dori, Bogandé, Boromo, Dédougou). 
The comparison utilized statistical metrics including Pearson 
correlation coefficient (r), Relative Bias (BIAS), Root Mean 
Square Error (RMSE), Probability of Detection (POD), False 
Alarm Ratio (FAR), and Critical Success Index (CSI). GPM-
IMERG (V07), with a spatial resolution of 0.1° × 0.1° and 
temporal resolution of 30 minutes, showed higher correlation 
with ground observations compared to CHIRPS (0.05° × 0.05°, 
daily resolution). Specifically, GPM-IMERG achieved superior 
POD and CSI scores, indicating better detection of precipitation 
events, particularly for short-term nowcasting. These results 
justified the selection of GPM-IMERG (V07) as the primary 
precipitation dataset, complemented by GOES-16 cloud and 
moisture indices and MERIT DEM topographic data for model 
development. Figure 6 illustrates the correlation results.

Figure 6: Comparison of correlation coefficients (r) between 
GPM-IMERG (V07) and CHIRPS (V2.0) precipitation estimates 
and observations from nine meteorological stations in Burkina 
Faso over the period 2010–2020

Figure 7: Comparison of POD, FAR, RMSE between GPM-
IMERG (V07) and CHIRPS (V2.0) precipitation estimates and 
observations from nine meteorological stations in Burkina Faso 
over the period 2010–2020.

Comparative Model Performance
The performance of three machine learning models—CatBoost, 
CNN, and a hybrid CNN-LSTM—was evaluated on an 
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independent test dataset (January 1, 2022–June 21, 2024) 
using continuous and categorical metrics. Table 1 presents the 
regression metrics: Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and Coefficient of Determination (R²).

Table 1: Continuous Error-Based Metrics for the Models
Models RMSE MAE R2

CatBoost 1.23 0.42 0.14
CNN 1.29 0.32 0.22
CNN-LSTM 1.46 0.62 0.017

 

Figure 8: Scatter plots comparing observed and predicted 
precipitation values for each model. From left to right, the 
subfigures correspond to CNN, CatBoost, and CNN-LSTM, 
respectively

CatBoost exhibited the lowest RMSE (1.23), indicating higher average prediction accuracy, while CNN achieved the lowest MAE 
(0.32), suggesting more stable and smaller-magnitude errors. The CNN model also had the highest R² (0.22), indicating a slightly 
better explanation of data variability. Table 2 presents categorical metrics for rain event detection across various thresholds (0.2 to 
1.0 mm/h).

Table 2: Categorization Metrics for Predictions by Threshold
Thres  
holds

CatBoost CNN CNN-LSTM
POD FAR CSI ACC POD FAR CSI ACC POD FAR CSI ACC

0.2 0.84 0.65 0.32 0.77 0.57 0.41 0.40 0.89 0.69 0.81 0.16 0.55
0.4 0.69 0.52 0.39 0.87 0.52 0.32 0.41 0.91 072 0.83 0.15 0.54
0.6 065 0.47 0.41 0.90 0.50 0.32 0.40 0.92 0.74 0.84 0.14 0.54
0.8 0.64 0.46 0.41 0.91 0.49 0.33 0.39 0.93 0.60 0.45 0.40 0.91
1 0.63 0.47 0.40 0.92 0.47 0.34 0.38 0.93 0 0 0 0.91

CatBoost showed a high POD (0.84) at the 0.2 mm/h threshold 
but a higher FAR (0.65), indicating more false positives for 
light rain. CNN had a lower POD (0.57) but a better CSI (0.40) 
at the same threshold, suggesting a better balance between 
true and false detections. CNN-LSTM’s POD dropped to 0 at 
higher thresholds, limiting its ability to detect significant rainfall 
events. Accuracy (ACC) was highest for CNN (0.89–0.93) 
across thresholds, followed by CatBoost (0.77–0.92).

Figure 9: Evolution of the metrics POD, FAR, CSI, and 
Accuracy as a function of the threshold for each model. From 
left to right, the subfigures correspond to CNN, CatBoost, and 
CNN-LSTM, respectively.

Spatial and Temporal Performance Analysis
The spatial and temporal performance of the models was 
analyzed to assess variations across Burkina Faso’s agro-climatic 
zones (Sahelian, Sudano-Sahelian, Sudanian) and seasons 
(June–October rainy season, November–May dry season). 
The CatBoost model showed consistent performance across 
the Sahelian and Sudano-Sahelian zones, with lower RMSE 
and higher POD for light precipitation events, likely due to its 
robustness to heterogeneous data. The CNN model performed 
better in the Sudanian zone, where higher rainfall (900–1200 
mm annually) provided more distinct patterns for spatial feature 
extraction. Temporally, all models exhibited better performance 

during the peak rainy season (July–September), with CatBoost 
maintaining higher accuracy (ACC up to 0.92) for significant 
events. Performance declined during the dry season, particularly 
for CNN-LSTM, which struggled with sparse precipitation 
data. Spatial biases were observed, with CNN showing lower 
MAE in southern regions, while CatBoost was more effective in 
northern, drier zones.

Case Studies of Extreme Events
The models were evaluated on notable extreme weather events 
during the test period (2022–2024), such as heavy rainfall 
episodes linked to monsoon surges or tropical storms. For a 
significant event in August 2022, the CNN model accurately 
predicted high-intensity precipitation in the Sudanian zone. 
CatBoost successfully detected the onset of this event (POD 0.64 
at 0.8 mm/h threshold) but overestimated light rain in adjacent 
areas (FAR 0.46). CNN-LSTM failed to capture the intensity of 
this event, with a POD of 0 at higher thresholds. Another case 
in July 2023 showed similar trends, with CNN providing stable 
predictions over 2-hour and 6-hour horizons. These case studies 
highlight CNN’s strength in capturing spatial patterns of extreme 
events and CatBoost’s ability to detect event occurrence, despite 
higher false positives.

Discussion
Interpretation of Results
The results indicate that CatBoost and CNN outperform CNN-
LSTM for precipitation nowcasting in Burkina Faso. CatBoost’s 
lowest RMSE (1.23) reflects its precision in minimizing squared 
errors, making it suitable for applications prioritizing overall 
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accuracy. Its high POD (0.84 at 0.2 mm/h) demonstrates strong 
detection of light precipitation, though the high FAR (0.65) 
suggests challenges with false positives. The CNN model’s 
lowest MAE (0.32) and highest R² (0.22) indicate stable 
predictions and better capture of data variability, particularly in 
the Sudanian zone with higher rainfall. The CNN-LSTM model 
underestimates precipitation, especially for intense events, as 
evidenced by its POD dropping to 0 at thresholds ≥ 0.8 mm/h. 
Comparisons with related work show that our CatBoost (CSI 
0.32, POD 0.84) and CNN (CSI 0.40, POD 0.57) models 
outperform Attention-Unet (CSI 0.283, POD 0.473) from study 
in detection metrics but lag in RMSE (0.751 vs. 1.23–1.46). 
Study’s CNNT model has a lower RMSE (0.42) but higher 
MAE (12.71) compared to our CNN’s MAE (0.32) [17,18]. The 
CNN-LSTM in study (RMSE 0.15) outperforms all our models, 
suggesting potential for architectural improvements [19].

Limitations and Uncertainties
Methodological limitations include insufficient data volume and 
computational power, which restricted model deployment. The 
low R² scores (0.017–0.22) indicate that all models struggle to 
fully explain precipitation variability, likely due to the complex, 
non-linear nature of tropical convective processes. The sparse 
meteorological station network (only nine stations) limited 
ground-truth validation, potentially introducing biases in regions 
with low station coverage. The high FAR of CatBoost (0.65 
at 0.2 mm/h) and CNN-LSTM (0.81) for light rain detection 
suggests sensitivity to noise in satellite data, particularly from 
GOES-16 cloud indices. Temporal data division (2017–2021 
training, 2022–2024 testing) ensured independence but may not 
fully capture long-term climate shifts. Uncertainties in GPM-
IMERG (V07) data, such as latency in near-real-time products, 
could affect nowcasting accuracy for operational use.

Opportunities for Improvement
Model performance could be enhanced by incorporating 
additional satellite data bands (e.g., more GOES-16 
spectral bands) to better capture cloud dynamics. Increasing 
computational resources for deeper hyperparameter optimization, 
particularly for CNN-LSTM, could improve its handling of 
intense events. Expanding the training dataset with longer time 
series or additional ground observations would enhance model 
robustness. Hybrid approaches combining CatBoost and CNN 
strengths (e.g., ensemble methods) could balance accuracy and 
stability. Implementing advanced data assimilation techniques 
to integrate real-time station data with satellite inputs could 
reduce biases. Exploring transformer-based models, as seen in 
study [17], may improve performance for complex precipitation 
patterns.

Operational Implications
The operational implementation of the CatBoost and CNN 
models offers significant potential for water resource 
management and disaster preparedness in Burkina Faso. Their 
ability to detect light and moderate precipitation events supports 
agricultural planning, particularly in the Sudano-Sahelian zone. 
However, high FAR values necessitate post-processing to filter 
false positives for operational reliability. Developing a web-
based application would enable real-time access to predictions 
via an interactive interface, providing tailored statistics for 

stakeholders (e.g., farmers, water managers). Continuous model 
retraining on recent data, facilitated by Google Earth Engine and 
Apache Beam, would ensure adaptability to changing climatic 
conditions. Collaboration with the National Meteorology 
Agency (ANAM) could integrate these models into existing 
forecasting systems, enhancing early warning capabilities for 
extreme events.

Conclusion
This study provides a reproducible framework for rainfall 
nowcasting in West Africa, with a specific focus on Burkina Faso. 
It successfully developed and evaluated three complementary 
machine learning approaches—CatBoost, CNN, and CNN-
LSTM—for rainfall nowcasting in Burkina Faso using multi-
source satellite data and advanced processing pipelines. The 
results showed that CatBoost achieved the lowest RMSE (1.23) 
and highest Probability of Detection (0.84 for light rain), making 
it suitable for detecting the occurrence of precipitation events, 
while CNN provided the lowest MAE (0.32) and highest R² 
(0.22), demonstrating better stability and ability to capture 
spatial rainfall variability, especially in the Sudanian zone. The 
CNN-LSTM model, although less effective for intense events, 
highlighted the importance of combining spatial and temporal 
features.

Despite encouraging results, all models showed limitations in 
fully explaining precipitation variability (low R² values) and 
exhibited high false alarm ratios, particularly for light rainfall. 
These findings underline the complexity of convective rainfall 
in the Sahel and the need for richer datasets and more advanced 
architectures.

Operationally, the CatBoost and CNN models offer promising 
tools for supporting disaster preparedness and agricultural 
planning in Burkina Faso. Future research should focus on 
ensemble approaches combining model strengths, assimilation 
of real-time ground observations, and the integration of 
transformer-based architectures to better capture non-linear 
precipitation dynamics. Expanding ground-based networks and 
extending the training dataset to cover longer climatic cycles 
will also be critical to improving robustness and operational 
reliability.

This work thus provides a reproducible framework for rainfall 
nowcasting in West Africa and contributes to building climate 
resilience in regions where timely and reliable precipitation 
forecasts are vital for food security and risk management.
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