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ABSTRACT

for supporting disaster preparedness, and agricultural planning.
\

Accurate precipitation forecasting is vital for Sahelian countries like Burkina Faso, where rainfed agriculture drives the economy and
erratic rainfall complicates water management and disaster preparedness. This study develops and evaluates three machine learning
models—CatBoost, CNN, and a hybrid CNN-LSTM—for precipitation nowcasting using multi-source satellite data. Leveraging Google
Earth Engine, we integrated GPM-IMERG (V07)(calibrated precipitation), GOES-16 (cloud and moisture indices), elevation, and
CHIRPS(calibrated precipitation) data. GPM-IMERG (V07) was selected over CHIRPS based on higher correlation with ground-based
observations from nine weather stations over 2010-2020. Model training used data from July 10, 2017, to December 31, 2021, with testing
and validation from January 1, 2022, to June 21, 2024. GPM-IMERG (V07) outperformed CHIRPS in Probability of Detection (POD)
and Critical Success Index (CSI). CatBoost achieved an RMSE of 1.23, MAE of 0.42, and POD of 84%, while CNN recorded an RMSE
of 1.29, MAE of 0.32, and POD of 57% (threshold 0.2). The CNN-LSTM hybrid effectively captured spatial and temporal precipitation
patterns. This research provides a reproducible framework that enhances forecasting tools for West Africa, with significant implications

Keywords: Precipitation Nowcasting, Catboost, CNN-LSTM,
CNN, GPM-IMERG, GOES-16, Google Earth Engine, Burkina
Faso, Sahel

Introduction

Climate change is intensifying extreme weather events like
droughts and floods, severely impacting agriculture, economies,
and livelihoods, particularly in tropical and sub-Saharan regions
like Burkina Faso, where rainfed agriculture sustains over 22
million people across 274,200 km?. In this Sahelian country,
the West African monsoon drives a short rainy season (June—
September), with precipitation varying from 300 mm in the
northern Sahelian zone to over 1200 mm in the southern Sudanian
zone, creating complex spatial and interannual variability [1,2].
This variability, coupled with sparse ground-based observations,
limits the accuracy of traditional numerical weather prediction

(NWP) models, such as ECMWF and GFS, for very short-term
rainfall nowcasting critical for food security, water management,
and disaster preparedness.

Recent advances in satellite remote sensing and artificial
intelligence (Al) offer promising solutions. Using Google Earth
Engine, this study integrates data from GPM-IMERG (V07),
selected over CHIRPS for its higher correlation with ground-
based observations from nine weather stations (2010-2020), and
GOES-16 (cloud and moisture indices), alongside elevation data.
We develop and evaluate three Al models—CatBoost, CNN, and
a hybrid CNN-LSTM—trained on data from July 10, 2017, to
December 31, 2021, and tested/validated from January 1, 2022,
to June 21, 2024. CNNs excel in extracting spatial features
from satellite imagery, while LSTM models capture temporal
dependencies, enabling accurate nowcasting.
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The primary aim of this research is to develop a robust
precipitation nowcasting system tailored to Burkina Faso’s
specific conditions by leveraging synergies between multi-
source satellite data and advanced machine learning techniques.

Objectives

The specific objectives are:

»  Evaluate and select the most suitable satellite precipitation
products for the study region.

e Develop a methodology for integrating multi-source
satellite data, including precipitation observations, cloud
imagery, and topographic data.

e Design and implement three complementary machine
learning model architectures.

e Comparatively evaluate the performance of these models on
independent data.

e Provide recommendations
forecasting system.

for operationalizing the

The remainder of this article is structured as follows. Section
2 introduces the study area and data sources, while Section 3
details the methodological framework. Section 4 outlines the
evaluation criteria and performance metrics employed, and
Section 5 reports the main results. Finally, Section 6 provides
concluding remarks, highlighting key findings and discussing
their implications for water resource management and disaster
preparedness in Burkina Faso.

Study Area

Geographical and Climatic Characteristics of Burkina Faso
Burkina Faso is located between 9°20' and 15°05' North latitude
and between 2°20' East and 5°30" West longitude. The country
features a generally flat topography with an average elevation of
400 meters, punctuated by some plateaus and escarpments. This
relatively uniform terrain influences atmospheric circulation
regimes and precipitation patterns.The climate of Burkina Faso
is dry tropical, characterized by two main seasons: a dry season
from November to May and a rainy season from June to October
[3]. Climatic variability is primarily driven by the seasonal
movements of the Intertropical Convergence Zone (ITCZ),
which determines the extent of moist air masses penetrating
from the Atlantic Ocean.The country’s three agro-climatic zones
exhibit distinct characteristics [4]:

*  Sahelian zone (north): rainy season from July to September.

e Sudano-Sahelian zone (center): rainy season from June to
October.

*  Sudanian zone (south): rainy season from May to October.

Figure 1 illustrates the geographic boundaries of Burkina Faso
along with its three agro-climatic zones: Sahelian, Sudano-
Sahelian, and Sudanian.

Meteorological Observation Infrastructure

Burkina Faso’s national meteorological observation network,
managed by the National Meteorology Agency (ANAM),
comprises approximately around two hundred seventy synoptic
and climatological stations unevenly distributed across the
country [5,6]. The limited spatial coverage and occasionally
inconsistent data quality pose significant constraints for

developing forecasting models based in-situ

observations.

solely on

For this study, we selected nine meteorological stations
representative of the different climatic zones, with continuous
and reliable time series data over the period 2010-2020. These
stations, located in Ouagadougou, Bobo-Dioulasso, Ouahigouya,
Fada N’Gourma, Gaoua, Dori, Bogandé, Boromo, and Dédougou,
serve as the reference network for validating satellite products.

Agro-climatic zones of Burkina Faso

Sahelian (<600 mm)
® sudanian (>900 mm)
@® sSudano-Sahelian (600-900 mm)

Figure 1: Map showing the geographic location of Burkina Faso
and its three agro-climatic zones: Sahelian, Sudano-Sahelian,
Sudanian.
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Figure 2: Map of meteorological stations distribution

Figure 3: Synoptic station of Bobo-Dioulasso

Satellite Data

Selection of Precipitation Products

Selecting the most suitable satellite precipitation product is a
critical step in our methodology.
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We Compared Two Widely used Products in the Scientific
Community

GPM-IMERG (Integrated Multi-satellitE Retrievals for GPM)
Version 07 [7]: Spatial Resolution: 0.1° x 0.1° (approximately
10 km)

Temporal Resolution: 30 minutes

Temporal Coverage: Since March 2014

Algorithm: Fusion of radar and passive microwave data from
multiple satellites

Latency: Research product (3—4 months), near-real-time product
(4-6 hours)

CHIRPS (Climate Hazards Group InfraRed Precipitation with
Station data) Version 2.0 [8]: Spatial Resolution: 0.05° x 0.05°
(approximately 5 km)

Temporal Resolution: Daily

Temporal Coverage: Since 1981

Algorithm: Combination of thermal infrared observations,
microwave data, and station data

Advantages: Long time series, calibration with station data

The comparative evaluation of these products was conducted
over the period 2010-2020 using several statistical metrics:
Pearson Correlation Coefficient (r)

Root Mean Square Error (RMSE):

RMSE = Q’%Z(yi _.j}i)z
i=1

Probability of Detection (POD): POD = — &

TP+ FN
FP
TP+ FP
7P
TP+ FP+FN

False Alarm Ratio (FAR): FAR =

Critical Success Index (CSI): CSI =

where y. represents satellite data, y represents observed data, n
represents the number of all data, TP denotes true positives, FP
denotes false positives, and FN denotes false negatives.

Cloud Imagery and Atmospheric Variables

The GOES-16 satellite (positioned at ~ 75.2°W in a geostationary
orbit) provides continuous coverage over West Africa using its
Advanced Baseline Imager (ABI). We selected the 16 spectral
bands from the MCMIPF (Multi-band Cloud & Moisture
Imagery Full-Disk) product:

Visible and Near-Infrared Bands (reflective, bands 1-6)
Band 1 (0.45-0.49 um): “Blue” — aerosols, thin clouds

Band 2 (0.59-0.69 um): “Red” — visibility, fog, cloud/ground
contrast

Band 3 (0.846-0.885 um): “Veggie” — vegetation, snow/ice
Band 4 (1.371-1.386 um): “Cirrus” — cirrus clouds detection
Band 5 (1.58-1.64 um): Snow/Ice, cloud-top phase

Band 6 (2.225-2.275 pum): Cloud particle size, cloud/ice phase,
snow cover

Infrared / Emissive Bands (bands 7-16)

Band 7 (~3.80-4.00 pm): shortwave IR window — hot spots, fire
detection, low fog/stratus

Band 8 (~5.77-6.60 um): upper tropospheric water vapor

Band 9 (~6.75-7.15 um): mid-tropospheric water vapor

Band 10 (~7.24-7.44 um): lower/mid tropospheric water vapor
Band 11 (~8.3-8.7 um): cloud top phase, cloud temperature
Band 12 (~9.42-9.80 um): ozone

Band 13 (~10.1-10.6 pm): clean longwave IR window — surface
& cloud properties

Band 14 (~10.8-11.6 pm): IR longwave window — surface /
cloud IR emission

Band 15 (~11.8-12.8 um): “dirty” longwave IR window —
sensitivity to moisture, thinner clouds

Band 16 (~13.3 um): CO: longwave IR — air temperature profile,
cloud height, etc.

These bands provide critical information on cloud properties,
atmospheric moisture, trace gases (ozone, CO2), surface/ cloud
temperature, and are well suited for precipitation-nowcasting
over Burkina Faso.

Topographic Data

Altitude data were obtained from the Multi-Error-Removed
Improved-Terrain (MERIT) Digital Elevation Model (DEM),
developed by the University of Tokyo [10]. This DEM offers
a spatial resolution of 3 arc-seconds (approximately 90 m)
and is one of the most accurate datasets currently available.
Topographic data are critical as they significantly influence
precipitation processes through orographic effects, even in a
relatively flat country like Burkina Faso.

Methodology

Technical Architecture and Computing Infrastructure

Google Earth Engine

Google Earth Engine (GEE) serves as the central platform of our

processing infrastructure. This cloud-based solution provides

direct access to extensive satellite image catalogs (e.g., GPM for
precipitation and GOES-16 for cloud cover) without the need
for prior downloading [11]. The main strengths of GEE include

e Instant Data Access: Images are directly retrieved from
catalogs (GPM, GOES-16, DEM) and combined to create
the required datasets.

e Distributed Computing Power: Processing tasks
(temporal filtering, extraction of 5x5 patches, generation
of time series) are parallelized on Google’s infrastructure,
significantly accelerating data preparation.

e Flexible APIs: Both Python and JavaScript interfaces enable
automation of pipeline steps such as fixed-point generation,
training sample creation, and export to .npz format.

e Integrated Visualization Tools: GEE facilitates quality
control of images and patches prior to export, ensuring the
reliability of the datasets used for model training.

Processing Pipeline with Apache Beam

The large data volume (several terabytes) requires a robust
and scalable processing pipeline. To address this challenge,
we designed an architecture based on Apache Beam, a unified
programming model for batch and streaming data processing
[12]. The key advantages of Apache Beam are:
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Portability: The same code can be executed on multiple runners
(e.g., Google Dataflow, Apache Spark, Apache Flink).

Scalability: Processing is automatically distributed across
multiple machines to handle large-scale datasets.

Reliability: Failures are managed transparently, with built-in
mechanisms for retrying and resuming incomplete tasks.

Monitoring: Real-time tracking of pipeline execution and
performance metrics.

The pipeline consists of the following steps:

»  Data extraction from Google Earth Engine (GEE) catalogs.

e Spatial and temporal filtering of satellite imagery.

e Alignment of spatial and temporal resolutions.

e Application of transformations and normalizations.

*  Export to optimized storage formats (e.g., TFRecord,
Parquet, or. npz for deep learning workflows).

Data Preparation and Preprocessing

Spatial and Temporal Harmonization

Integrating data from multiple sources requires rigorous
harmonization of spatial and temporal resolutions:

Spatial Harmonization

Reprojection of all data to the coordinate of study area.
Resampling to a common grid of 0.1° x 0.1° (approximately 10
km).

Masking of oceanic pixels and border regions.

Temporal Harmonization

Synchronization of all products to an hourly basis.
Aggregation of high-frequency data (30-minute intervals) to
hourly resolution.

Application of sliding windows to create training sequences.

Data Quality Management
A multi-level quality control system was implemented:

Level 1 - Physical Consistency Checks:
Verification of physical bounds.

Detection of outliers using statistical analysis.
Cross-validation between correlated variables .

Level 2 - Spatial Consistency Checks:

Detection of abnormal spatial discontinuities.
Comparison with reference climatologies.

Validation against meteorological station observations.

Level 3 - Temporal Consistency Checks:
Detection of breaks in time series.
Analysis of statistical stationarity.
Validation of seasonal cycle continuity.

Sampling Strategy

Creating a balanced and representative training dataset is a
major challenge due to the naturally imbalanced distribution of
precipitation intensities (many low-intensity events, few intense
events).

Precipitation and Elevation Discretization

Continuous precipitation values were clamped between 0 and 30
mm/h and discretized into 31 uniform classes. Elevation values
were similarly clamped between 0 and 749 m, which corresponds
to the highest elevation in Burkina Faso, and discretized into equal
bins. A unique class identifier was then created by combining
precipitation and elevation bins to ensure that sampling accounted
for both precipitation intensity and topography. This approach
mitigates the over-representation of low-elevation regions. Figure
4 illustrates the resulting discretization.

Stratified Sampling

The stratifiedSample function in Google Earth Engine (GEE)
was employed to [13]:

Perform proportional sampling within each class.

Preserve the spatial distribution of events.

Maintain seasonal variability.

Minimize sampling bias.

Sampling parameters were optimized to produce a sufficiently
large dataset, approximately balanced across the combined
classes, suitable for training deep learning models for
precipitation nowcasting.

— (31 Classen)

L = o 1 2 3 45 6 7 8 9 10 1 12 13 14 15
eds
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

"‘r.d.'"

Figure 4: Precipitation intensity classes for balanced dataset
generation

Normalization and standardization

Z~score Normalization

For each variable Xi, normalization is performed using the
formula:

Z=(X—u)/c.

Where . and o, are the mean and standard deviation, calculated
only on the training dataset to prevent data leakage. This method
was primarily used because many machine learning algorithms
(e.g., neural networks, CatBoost, ...) are sensitive to the scale of
input variables. Z-score normalization centers the data around
zero and scales it to comparable ranges, which improves training
efficiency and stabilizes convergence.

Alternative Methods

*  Robust Normalization

For variables with non-Gaussian distributions or persistent
outliers, a robust normalization using the median and interquartile
range can be applied :

Zi = (Xi—mediani)/IQRi.

Where IQR represents the interquartile range.

¢ Quantile Normalization

For certain variables with multi-modal distributions, a quantile
transformation can map the empirical distribution to a uniform
distribution.
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These alternative methods were considered for specific cases but
were not applied to the majority of variables in this study.

Data Division
The temporal division of data respects the sequential nature of
meteorological phenomena while preventing data leakage:

Training Period: July 10, 2017 — December 31, 2021 (80% of the
data)Start date chosen based on the full availability of all satellite
products. Includes four complete seasons to capture interannual
variability. Balanced representation of normal, dry, and wet years.

Testing and Validation Period: January 1, 2022 — June 21, 2024
(20% of the data)Fully independent period for final evaluation.
Includes extreme weather events to test model robustness.
Covers two complete rainy seasons.

Model Architecture

To gain a comprehensive understanding of our modeling
framework, we refer to the architectural diagram presented in
Figure 5. This diagram provides a detailed visual representation
of the different stages of our methodology. The following
sections describe the models employed in our research.

Figure 5: Overview of the proposed modeling framework.

CatBoost Model

CatBoost (Categorical Boosting) isamodern evolution of gradient
boosting algorithms, particularly suited for heterogencous data
and categorical features [14].

Specific Advantages for Our Application

Native handling of categorical features (climatic zones, cloud
types).

Robustness to outliers through the use of symmetric trees.
Reduction of overfitting via ordered boosting.

Detailed Architecture

python

model_params = {
"iterations’: 100,
'depth’': 8,
'learning_rate': 0.1,
12 leaf reg': 3,
'bootstrap_type': 'Bayesian’,
'bagging temperature': 1,
'random_seed': 42,
‘allow_writing_files': False,
'devices’: '0:1'

Hyperparameter Optimization:

Optimization follows a Bayesian search strategy with temporal
cross-validation:

Coarse Search: Over
configurations).

Fine Search: Around identified local optima (100 configurations).
Final Validation: On a temporal holdout set.

a broad parameter space (200

Optimization metrics include:

Mean Absolute Error (MAE) weighted by intensity.
Spearman correlation coefficient.

POD for detecting events >= 0,2 mm/h.

Hybrid CNN-LSTM Model

This architecture combines the complementary strengths of
convolutional neural networks (CNNs) for spatial feature
extraction and recurrent neural networks (LSTMs) for modeling
temporal dependencies [15].

CNN Architecture: The convolutional component consists of
three successive convolution blocks:

Bloc 1: Conv2D(32, 3x3) — BatchNorm — ReLU —
MaxPool2D(2x2)

Bloc 2: Conv2D(64, 3x3) — BatchNorm — ReLU —
MaxPool2D(2x2)

Bloc 3: Conv2D(128, 3x3) — BatchNorm — ReLU —
GlobalAveragePooling

LSTM Architecture: The recurrent component processes
extracted features over 24-hour temporal sequences:
LSTM(256 units) — Dropout(0.3) — Dense(128) — ReLU —
Dropout(0.2) — Dense(1)

Training Strategy

Optimizer: Adam with adaptive learning rate (0.001 — 0.0001)
Loss Function: Huber Loss (robust to outliers)
Regularization: L2 (0.001) + Dropout (0.2-0.3)

Batch Size: 100

Epochs: 100 with early stopping

Data Augmentation Techniques
Random rotation of spatial patches (+15°)
Spatial translation (£2 pixels)

Gaussian noise on inputs (¢ = 0.01)
Mixup between samples of the same class

CNN Model
This architecture fully leverages the capabilities of modern
convolutional neural networks for spatial regression [16].

Architectural Inspiration

The design is inspired by pre-trained models from Hugging
Face, adapted for our meteorological regression task. The input
consists of a small spatial patch (5x5) with 52 channels, and the
output is two predicted precipitation maps (5x5x2):

Input(5x5%52) —
ConvBlock1(32, 3x3, s=1) —
ConvBlock2(64, 3%3, s=1) —
ConvBlock3(128, 3x3, s=1) —

J Envi Sci Agri Res, 2025

www.oaskpublishers.com

Page: 5 of 9



Copyright © Bado Xavier, et al.

Volume 3 | Issue 5

ConvBlock4(256, 3%x3, s=1) —
ConvBlock5(512, 3%x3, s=1) —
Conv2D(2, 1x1, s=1)

Output: (5%5x2)

Optimized Convolution Blocks

Each ConvBlock integrates modern deep learning techniques to
maximize representational capacity while keeping the number of
parameters manageable :

ConvBlock(filters, kernel_size)
Conv2D(filters, kernel size, s=1, padding="same")
— BatchNormalization
— Swish activation
— DepthwiseConv2D (to reduce parameter count)
— BatchNormalization
— Swish activation
— SE-block (Squeeze-and-Excitation)

The loss is defined as Smooth L1, combining the robustness of
L1 loss to outliers with the differentiability of L2 loss, making it
particularly well-suited for precipitation regression tasks.

SmoothL1(y_true, y_pred, p=1.0):
error = |y _true - y_pred|
return where(error < 3, 0.5 * error? / B, error - 0.5 * )

Advanced Optimization Strategies:
Optimizer: AdamW with weight decay (0.01)
Learning Rate Scheduling: Cosine annealing with warm restarts

Evaluation and Performance Metrics
Regression Metrics
Mean Absolute Error (MAE):

1 )
MAE=;Z|y,-—y,-I

i=1

Root Mean Square Error (RMSE):

MAE = '\’%Z(yi _)A}i)z
i=1

Coefficient of Determination (R?) :

RZ:I—SS

res

SS

tot

Where

SSI‘es = Z(yz _.);i)z and SSZOZ = Z(yz _.)_;1)2
i=1

i=l1

Classification Metrics (Rain Event Detection)
Confusion Matrix for Different Thresholds

. Thresholds 0.1 mm/h : Detection of precipitation
. Thresholds 1.0 mm/h : Significant precipitation

Derived Metrics
TP

POD(Probability Of Detection): TP+ FN

FAR (False Alarm Ratio): m

P

CSI (Critical Success Index): ———
TP+ FP+FN

Accuracy: —b*XFP
Y TP+ FP+EN+TN

Results

Satellite products evaluation

The evaluation of satellite precipitation products was
conducted to select the most suitable dataset for Burkina Faso’s
precipitation nowcasting. Two products, GPM-IMERG (V07)
and CHIRPS (V2.0), were compared over the period 2010-2020
using ground-based observations from nine meteorological
stations (Ouagadougou, Bobo-Dioulasso, Ouahigouya, Fada
N’Gourma, Gaoua, Dori, Bogandé, Boromo, Dédougou).
The comparison utilized statistical metrics including Pearson
correlation coefficient (r), Relative Bias (BIAS), Root Mean
Square Error (RMSE), Probability of Detection (POD), False
Alarm Ratio (FAR), and Critical Success Index (CSI). GPM-
IMERG (V07), with a spatial resolution of 0.1° x 0.1° and
temporal resolution of 30 minutes, showed higher correlation
with ground observations compared to CHIRPS (0.05° x 0.05°,
daily resolution). Specifically, GPM-IMERG achieved superior
POD and CSI scores, indicating better detection of precipitation
events, particularly for short-term nowcasting. These results
justified the selection of GPM-IMERG (V07) as the primary
precipitation dataset, complemented by GOES-16 cloud and
moisture indices and MERIT DEM topographic data for model
development. Figure 6 illustrates the correlation results.

Figure 6: Comparison of correlation coefficients (r) between
GPM-IMERG (V07) and CHIRPS (V2.0) precipitation estimates
and observations from nine meteorological stations in Burkina
Faso over the period 2010-2020

Figure 7: Comparison of POD, FAR, RMSE between GPM-
IMERG (V07) and CHIRPS (V2.0) precipitation estimates and
observations from nine meteorological stations in Burkina Faso
over the period 2010-2020.

Comparative Model Performance
The performance of three machine learning models—CatBoost,
CNN, and a hybrid CNN-LSTM—was evaluated on an
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independent test dataset (January 1, 2022—June 21, 2024)
using continuous and categorical metrics. Table 1 presents the
regression metrics: Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Coefficient of Determination (R?).

Table 1: Continuous Error-Based Metrics for the Models

Models RMSE MAE R2
CatBoost 1.23 0.42 0.14
CNN 1.29 0.32 0.22
CNN-LSTM 1.46 0.62 0.017

Figure 8: Scatter plots comparing observed and predicted
precipitation values for each model. From left to right, the
subfigures correspond to CNN, CatBoost, and CNN-LSTM,
respectively

CatBoost exhibited the lowest RMSE (1.23), indicating higher average prediction accuracy, while CNN achieved the lowest MAE
(0.32), suggesting more stable and smaller-magnitude errors. The CNN model also had the highest R? (0.22), indicating a slightly
better explanation of data variability. Table 2 presents categorical metrics for rain event detection across various thresholds (0.2 to

1.0 mm/h).
Table 2: Categorization Metrics for Predictions by Threshold
Thres CatBoost CNN CNN-LSTM
holds | POD FAR CSI ACC POD FAR CSI ACC POD FAR CSI ACC
0.2 0.84 0.65 0.32 0.77 0.57 0.41 0.40 0.89 0.69 0.81 0.16 0.55
0.4 0.69 0.52 0.39 0.87 0.52 0.32 0.41 0.91 072 0.83 0.15 0.54
0.6 065 0.47 0.41 0.90 0.50 0.32 0.40 0.92 0.74 0.84 0.14 0.54
0.8 0.64 0.46 0.41 0.91 0.49 0.33 0.39 0.93 0.60 0.45 0.40 0.91
1 0.63 0.47 0.40 0.92 0.47 0.34 0.38 0.93 0 0 0 0.91

CatBoost showed a high POD (0.84) at the 0.2 mm/h threshold
but a higher FAR (0.65), indicating more false positives for
light rain. CNN had a lower POD (0.57) but a better CSI (0.40)
at the same threshold, suggesting a better balance between
true and false detections. CNN-LSTM’s POD dropped to O at
higher thresholds, limiting its ability to detect significant rainfall
events. Accuracy (ACC) was highest for CNN (0.89-0.93)
across thresholds, followed by CatBoost (0.77-0.92).

Figure 9: Evolution of the metrics POD, FAR, CSI, and
Accuracy as a function of the threshold for each model. From
left to right, the subfigures correspond to CNN, CatBoost, and
CNN-LSTM, respectively.

Spatial and Temporal Performance Analysis

The spatial and temporal performance of the models was
analyzed to assess variations across Burkina Faso’s agro-climatic
zones (Sahelian, Sudano-Sahelian, Sudanian) and seasons
(June—October rainy season, November—May dry season).
The CatBoost model showed consistent performance across
the Sahelian and Sudano-Sahelian zones, with lower RMSE
and higher POD for light precipitation events, likely due to its
robustness to heterogeneous data. The CNN model performed
better in the Sudanian zone, where higher rainfall (900-1200
mm annually) provided more distinct patterns for spatial feature
extraction. Temporally, all models exhibited better performance

during the peak rainy season (July—September), with CatBoost
maintaining higher accuracy (ACC up to 0.92) for significant
events. Performance declined during the dry season, particularly
for CNN-LSTM, which struggled with sparse precipitation
data. Spatial biases were observed, with CNN showing lower
MAE in southern regions, while CatBoost was more effective in
northern, drier zones.

Case Studies of Extreme Events

The models were evaluated on notable extreme weather events
during the test period (2022-2024), such as heavy rainfall
episodes linked to monsoon surges or tropical storms. For a
significant event in August 2022, the CNN model accurately
predicted high-intensity precipitation in the Sudanian zone.
CatBoost successfully detected the onset of this event (POD 0.64
at 0.8 mm/h threshold) but overestimated light rain in adjacent
areas (FAR 0.46). CNN-LSTM failed to capture the intensity of
this event, with a POD of 0 at higher thresholds. Another case
in July 2023 showed similar trends, with CNN providing stable
predictions over 2-hour and 6-hour horizons. These case studies
highlight CNN’s strength in capturing spatial patterns of extreme
events and CatBoost’s ability to detect event occurrence, despite
higher false positives.

Discussion

Interpretation of Results

The results indicate that CatBoost and CNN outperform CNN-
LSTM for precipitation nowcasting in Burkina Faso. CatBoost’s
lowest RMSE (1.23) reflects its precision in minimizing squared
errors, making it suitable for applications prioritizing overall
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accuracy. Its high POD (0.84 at 0.2 mm/h) demonstrates strong
detection of light precipitation, though the high FAR (0.65)
suggests challenges with false positives. The CNN model’s
lowest MAE (0.32) and highest R?> (0.22) indicate stable
predictions and better capture of data variability, particularly in
the Sudanian zone with higher rainfall. The CNN-LSTM model
underestimates precipitation, especially for intense events, as
evidenced by its POD dropping to 0 at thresholds > 0.8 mm/h.
Comparisons with related work show that our CatBoost (CSI
0.32, POD 0.84) and CNN (CSI 0.40, POD 0.57) models
outperform Attention-Unet (CSI 0.283, POD 0.473) from study
in detection metrics but lag in RMSE (0.751 vs. 1.23-1.46).
Study’s CNNT model has a lower RMSE (0.42) but higher
MAE (12.71) compared to our CNN’s MAE (0.32) [17,18]. The
CNN-LSTM in study (RMSE 0.15) outperforms all our models,
suggesting potential for architectural improvements [19].

Limitations and Uncertainties

Methodological limitations include insufficient data volume and
computational power, which restricted model deployment. The
low R? scores (0.017-0.22) indicate that all models struggle to
fully explain precipitation variability, likely due to the complex,
non-linear nature of tropical convective processes. The sparse
meteorological station network (only nine stations) limited
ground-truth validation, potentially introducing biases in regions
with low station coverage. The high FAR of CatBoost (0.65
at 0.2 mm/h) and CNN-LSTM (0.81) for light rain detection
suggests sensitivity to noise in satellite data, particularly from
GOES-16 cloud indices. Temporal data division (2017-2021
training, 2022-2024 testing) ensured independence but may not
fully capture long-term climate shifts. Uncertainties in GPM-
IMERG (V07) data, such as latency in near-real-time products,
could affect nowcasting accuracy for operational use.

Opportunities for Improvement

Model performance could be enhanced by incorporating
additional satellite data bands (e.g., more GOES-16
spectral bands) to better capture cloud dynamics. Increasing
computational resources for deeper hyperparameter optimization,
particularly for CNN-LSTM, could improve its handling of
intense events. Expanding the training dataset with longer time
series or additional ground observations would enhance model
robustness. Hybrid approaches combining CatBoost and CNN
strengths (e.g., ensemble methods) could balance accuracy and
stability. Implementing advanced data assimilation techniques
to integrate real-time station data with satellite inputs could
reduce biases. Exploring transformer-based models, as seen in
study [17], may improve performance for complex precipitation
patterns.

Operational Implications

The operational implementation of the CatBoost and CNN
models offers significant potential for water resource
management and disaster preparedness in Burkina Faso. Their
ability to detect light and moderate precipitation events supports
agricultural planning, particularly in the Sudano-Sahelian zone.
However, high FAR values necessitate post-processing to filter
false positives for operational reliability. Developing a web-
based application would enable real-time access to predictions
via an interactive interface, providing tailored statistics for

stakeholders (e.g., farmers, water managers). Continuous model
retraining on recent data, facilitated by Google Earth Engine and
Apache Beam, would ensure adaptability to changing climatic
conditions. Collaboration with the National Meteorology
Agency (ANAM) could integrate these models into existing
forecasting systems, enhancing early warning capabilities for
extreme events.

Conclusion

This study provides a reproducible framework for rainfall
nowecasting in West Africa, with a specific focus on Burkina Faso.
It successfully developed and evaluated three complementary
machine learning approaches—CatBoost, CNN, and CNN-
LSTM—for rainfall nowcasting in Burkina Faso using multi-
source satellite data and advanced processing pipelines. The
results showed that CatBoost achieved the lowest RMSE (1.23)
and highest Probability of Detection (0.84 for light rain), making
it suitable for detecting the occurrence of precipitation events,
while CNN provided the lowest MAE (0.32) and highest R?
(0.22), demonstrating better stability and ability to capture
spatial rainfall variability, especially in the Sudanian zone. The
CNN-LSTM model, although less effective for intense events,
highlighted the importance of combining spatial and temporal
features.

Despite encouraging results, all models showed limitations in
fully explaining precipitation variability (low R? values) and
exhibited high false alarm ratios, particularly for light rainfall.
These findings underline the complexity of convective rainfall
in the Sahel and the need for richer datasets and more advanced
architectures.

Operationally, the CatBoost and CNN models offer promising
tools for supporting disaster preparedness and agricultural
planning in Burkina Faso. Future research should focus on
ensemble approaches combining model strengths, assimilation
of real-time ground observations, and the integration of
transformer-based architectures to better capture non-linear
precipitation dynamics. Expanding ground-based networks and
extending the training dataset to cover longer climatic cycles
will also be critical to improving robustness and operational
reliability.

This work thus provides a reproducible framework for rainfall
nowcasting in West Africa and contributes to building climate
resilience in regions where timely and reliable precipitation
forecasts are vital for food security and risk management.
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