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Introduction
As crucial as oil production is to Nigeria’s economic existence, 
it comes with significant environmental and health risks. Oil 
and gas producers have recently used novel techniques that 
incorporate increased stimulation and horizontal drilling 
[1-4]. These new techniques, referred to as fracking have 
altered the radioactivity and volume of oil and gas wastes. 
Naturally occurring radionuclides, also known as Naturally 
Occurring Radioactive Materials (NORM), are present in the 
geologic formations that host oil and gas deposits: Lead-210/
Polonium-210, Potassium-40, Thorium, Radium, and their 
byproducts [5-7].

The decomposition of marine life at the location of ancient seas 
contributed significantly to the creation of petroleum and natural 
gas in the Niger Delta region of Nigeria [8-11]. These shale, 
petroleum, and gas deposits consequently frequently occur 
in brine-containing aquifers (salt water). The radionuclides 

separate and settle out, creating different wastes at the surface, 
together with other minerals that are dissolved in the brine: 
pipes with mineral scale. Sludges/sediments equipment or 
components that are contaminated created waters. These wastes 
are categorized as technologically enhanced naturally occurring 
radioactive material since the extraction procedure concentrates 
the radionuclides that are already present in the environment and 
exposes them to the surface and human contact (TENORM).

Radiation contamination in the petroleum refining industry 
primarily arises from the use of naturally occurring radioactive 
materials (NORM) and technologically enhanced naturally 
occurring radioactive materials (TENORM) [12-14]. During the 
extraction, processing, and refining of oil and gas, radioactive 
isotopes such as radium-226, uranium-238, and thorium-228 can 
become concentrated in waste products and equipment.

NORM can be released into the environment through various 
processes, including the formation water that accompanies oil 
extraction, scaling in pipes, and disposal of waste materials. 
The presence of these radioactive materials poses health 
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risks to workers and nearby communities, necessitating 
effective monitoring and management strategies to mitigate 
contamination, as such, this study aims at determining the 
radiation contamination in some oil and gas sites in the Niger 
Delta area of Nigeria.

Materials and Method
Study Area
Site A: Between latitudes 3 and 5°N and longitudes 5 and 8°E, of 
the Niger Delta of Nigeria located in the Gulf of Guinea. With a 
surface area of over 70,000 km2, it is the biggest delta in Africa. 
It is also the most biologically diverse and has West Africa’s 
biggest drainage system flowing into the Atlantic Ocean.

Site B: Between latitudes 4.25° and 4.50°N and longitudes 7.00° 
and 7.15°E, the Bonny River, a 127 km long tidal estuary, forms 
the eastern side of the Niger Delta. Since it empties into the 
Atlantic Ocean first, it is both the largest and the most important 
river in the Niger Delta network.

Oil and gas development and production are severely stressing 
the ecosystem.

Data collection
Nigerian Nuclear Regulatory Authority (NNRA) calibrated 
Survey meter and other auxiliary equipment were utilize to 
collect Background Radiations and Radiation contamination 
level arising from two sets of barges used to transport radiation 
sources due to oil exploration and exploitation activities in the 
oil rich Niger Delta region of Nigeria.

Results and Discussion
Table 1 shows the radiation dose rates for the various sampled 
points in Site A and Site B	

Table 1: Radiation count for Site A and Site B
Site A Site B

Sampling Points Dose Rate (μSv/h) Dose Rate (μSv/h)
Background 0.12 0.24
left wing 0.12 0.12
Right wing 0.18 0.12
Anchor holder 1 0.12 0.12
Anchor holder 2 0.12 0.24

Anchor holder 3 0.24 0.18
Anchor holder 4 0.18 0.3
Anchor holder 5 0.18 0.12
Anchor holder 6 0.18 0.24
Anchor holder 7 0.12 0.06
Anchor holder 8 0.06 0.18
Anchor holder 9 0.18 0.24
Anchor holder 10 0.16 0.06
Anchor holder 11 0.18 0.12
Hand Rail A 0.18 0.18
Hand Rail A B 0.06 0.24
Hand Rail AC 0.18 0.06
Hand Rail AD 0.12 0.12
Space 1 0.18 0.18
Space 2 0.12 0.06
Space 3 0.06 0.012
Space 4 0.12 0.3

As shown in Table 1, the dose rate within Site A ranges from 
0.06 μSv/hr to 0.24 μSv/hr with mean dose rate of 0.14 μSv/
hr. The estimated AEDE within the site is between 0.006 mSv/
yr and 0.26 mSv/yr with mean value of 0.08 mSv/yr as shown 
in Table 2. These values are slightly lower than that measured 
within Site B which ranges between 0.01 μSv/hr and 0.3 μSv/hr 
with mean of 0.16 μSv/hr for the dose rate and 0.006 mSv/yr to 
0.32 mSv/yr with mean value of 0.18 mSv/yr for the AEDE as 
presented in Table 3. The difference in value can be attributed to 
high radionuclides concentration escaping the earth’s crust as a 
result of oil exploration. When naturally occurring radionuclide 
trapped within rocks are cracked from oil exploration, 
radionuclides are released into the immediate environment. The 
measured dose rates in both Sites are slightly lower than the 
0.274 μSv/hr global average natural dose of background ionizing 
radiation [15, 16]. The estimated mean AEDE for Site A and Site 
B are due to concentration of natural radionuclides (238U, 232Th 
and 40K) [17] which depends entirely on the geophysical and 
geological conditions of the environment [18].

The result of the background ionizing radiation (BIR) in Site 
A and Site B is presented in Table 2 and 3, which analyzed the 
radiation risk parameters with the exposure rate of both Sites.

Table 2: Background Ionization Radiation in Site A

S/N Sampling 
Points

Exposure Rate
(mR/h)

Equivalent Dose 
(mSv/yr)

Absorbed Dose
(nGy/hr)

Annual Effective Dose 
Equivalent (mSv/yr) ELCR ( X 10-3)

1 Background 0.012 1.01 104.4 0.13 0.46
2 Left Wing 0.012 1.01 104.4 0.13 0.46
3 Right Wing 0.018 1.51 156.6 0.19 0.67
4 Anchor 1 0.012 1.01 104.4 0.13 0.46
5 Anchor 2 0.012 1.01 104.4 0.13 0.46
6 Anchor 3 0.024 2.02 208.8 0.26 0.91
7 Anchor 4 0.018 1.51 156.6 0.19 0.67
8 Anchor 5 0.018 1.51 156.6 0.19 0.67
9 Anchor 6 0.018 1.51 156.6 0.19 0.67
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10 Anchor 7 0.012 1.01 104.4 0.13 0.46
11 Anchor 8 0.006 0.50 52.2 0.006 0.21
12 Anchor 9 0.018 1.51 156.6 0.19 0.67
13 Anchor 10 0.016 1.35 139.2 0.17 0.60
14 Anchor 11 0.018 1.51 156.6 0.19 0.67
15 Hand Rail A 0.018 1.51 156.6 0.19 0.67
16 Hand Rail AB 0.006 0.50 52.2 0.006 0.21
17 Hand Rail AC 0.018 1.51 156.6 0.19 0.67
18 Hand Rail AD 0.012 1.01 104.4 0.13 0.46
19 Space 1 0.018 1.51 156.6 0.19 0.67
20 Space 2 0.012 1.01 104.4 0.13 0.46
21 Space 3 0.006 0.50 52.2 0.006 0.21
22 Space 4 0.012 1.01 104.4 0.13 0.46

Mean Value 0.013 1.21 125.0 0.08 0.59

Table 3: Background Ionization Radiation in Site B

S/N Sampling 
Points

Exposure Rate
(mR/hr)

Equivalent Dose
(mSv/yr)

Absorbed Dose
(nGy/hr)

Annual Equivalent Dose 
Equivalent (mSv/yr) ELCR ( X 10-3)

1 Background 0.024 2.02 208.8 0.26 0.91
2 Left Wing 0.012 1.01 104.4 0.13 0.46
3 Right Wing 0.012 1.01 104.4 0.13 0.46
4 Anchor 1 0.012 1.01 104.4 0.13 0.46
5 Anchor 2 0.024 2.02 208.8 0.26 0.91
6 Anchor 3 0.018 1.51 156.6 0.19 0.67
7 Anchor 4 0.03 2.52 261 0.32 1.12
8 Anchor 5 0.012 1.01 104.4 0.13 0.46
9 Anchor 6 0.024 2.02 208.8 0.26 0.91
10 Anchor 7 0.006 0.50 52.2 0.006 0.21
11 Anchor 8 0.018 1.51 156.6 0.19 0.67
12 Anchor 9 0.024 2.02 208.8 0.26 0.91
13 Anchor 10 0.006 0.50 52.2 0.006 0.21
14 Anchor 11 0.012 1.01 104.4 0.13 0.46
15 Hand Rail A 0.018 1.51 156.6 0.19 0.67
16 Hand Rail AB 0.024 2.02 208.8 0.26 0.91
17 Hand Rail AC 0.006 0.50 52.2 0.006 0.21
18 Hand Rail AD 0.012 1.01 104.4 0.13 0.46
19 Space 1 0.018 1.51 156.6 0.19 0.67
20 Space 2 0.006 0.50 52.2 0.006 0.21
21 Space 3 0.012 1.01 104.4 0.13 0.46
22 Space 4 0.03 2.52 261 0.32 1.12

Mean Value 0.02 1.38 142.4 0.18 0.52

Table 2 presents the absorbed dose rates measured at Site A, which range from 52.2 nGy/hr to 208.8 nGy/hr, with a mean value of 
125.0 nGy/hr. Notably, this mean value exceeds comparable value of 84.0 nGy/hr given by UNSCEAR [15, 16]. In comparison, the 
values measured in Site B are slightly higher. The absorbed dose rate there ranges from 52.2 nGy/hr to 261 nGy/hr, with a mean 
value of 142.4 nGy/hr. Figure 1 illustrates the comparison of absorbed dose values with the UNSCEAR recommended limits across 
both sites. The data indicate that over 80% of the absorbed dose measurements are above the UNSCEAR standard.

Furthermore, the absorbed dose rates recorded in this study are higher than those reported by Aman and Avwiri [19], which fell 
within international standard values.
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The estimated Annual Effective Dose Equivalent (AEDE) within 
Site A ranges from 0.06 mSv/yr to 0.26 mSv/yr, with a mean 
value of 0.08 mSv/yr. This mean value is notably lower than the 
UNSCEAR standard value of 1.0 mSv/yr.

For AEDE, Site B reports a range of 0.06 mSv/yr to 0.32 mSv/yr, 
with a mean value of 0.18 mSv/yr (as shown in Table 3). Figure 
2 clearly illustrates that the values are below the permissible 
limits of 1.00 mSv/yr for the general public and 20.00 mSv/
yr for occupational workers, as recommended by ICRP [20] 
and UNSCEAR [15]. This finding indicates that the radiation 
levels in Sites A and B are within acceptable limits, suggesting 
no immediate radiological health risks to workers, visitors, or 
residents of the host community due to absorbed doses from 
BIR.

The observed differences in radiation values may be attributed to 
the presence of radionuclides, including 238U, 232Th and 40K 
along with their decay products [21, 22]. These radionuclides 
can be released as a result of exploration activities that disturb 
and release trapped materials from the Earth’s crust within and 
around the refineries.

It is important to note that the development of cancer due to 
exposure to ionizing radiation is not an immediate effect; it 
may take several years, if it develops at all. The term “excess 
lifetime cancer risk” (ELCR) is defined as the probability that an 
individual will develop cancer over their lifetime due to radiation 
exposure [23]. In Sites A and B, the ELCR values range from 
0.21 to 0.91 and 0.19 to 1.12, respectively, with calculated mean 
values of 0.59 and 0.52, as presented in Table 1 and Table 2. 
These mean values for ELCR exceed the average standard of 
0.29 [15, 16].

Figure 1: Comparison of Absorbed Dose in both Sites with 
UNSCEAR [15] Standard

Figure 2: Comparison of AEDE in both Sites with UNSCEAR 
[15] Standard

Figure 3: Comparison of ELCR in both Sites with UNSCEAR 
[15] Standard

This study, when compared with other research [24], is 
consistent with international standard values. Therefore, there 
should be strict monitoring of radiation levels, and work should 
be conducted on a shifting basis [25]. There is a potential risk 
of cancer-related health hazards and other radiation sicknesses 
as proposed.

Conclusion 
This study assessed the radiation contamination levels, annual 
effective dose (AEDE), and excess lifetime cancer risk (ELCR) 
associated with background ionizing radiation (BIR) within Site 
A and Site B. The findings indicate that the mean BIR levels 
and absorbed dose rates in Site A are slightly lower than those 
measured in Site B. Notably, the estimated mean AEDE for 
both sites remains below the permissible limit of 1.00 mSv/
yr. However, the ELCR values for both locations exceed the 
standard mean value of 0.29 × 10⁻³, highlighting a potential 
health risk associated with the concentration of radionuclides 
resulting from exploration activities.

This study serves as baseline data for understanding BIR 
contamination levels in the sites and provides valuable insights 
for assessing and monitoring future fluctuations in radiation 
levels. Such information is crucial for developing effective 
strategies for radiation protection and risk management in these 
industrial settings.
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