
J Envi Sci Agri Res, 2025 www.oaskpublishers.com

Review Article

Practical Problems with Function Extremes 
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ABSTRACT
Let f: D ⊂ ℝn → ℝ be a function and a D∈  a point. We say that a is a maximum (or a minimum) point for the function f if f(x) ≥ f(a) (or 
f(x) ≤ f(a) x D∀ ∈ . A maximum or a minimum point of a function is called an extreme point. In this paper we use the algorithms for 
determining the local extremes (conditional or unconditional) of a function to solve a variety of problems, mostly practical. These powerful 
methods are very useful and should be mastered by all students. 
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Introduction
The study of extrema—maximum and minimum values—of 
functions plays a central role in mathematical analysis and its 
applications. Identifying these critical points is essential in 
understanding the behavior of functions and solving a wide 
range of real-world problems. From optimizing production costs 
and maximizing profits in economics, to minimizing energy 
use in engineering systems or determining the best trajectory 
in physics, the concept of function extrema provides powerful 
tools for modelling and decision-making. 

This article explores the theoretical foundations of function 
extrema, including conditions for local and global maxima 
and minima, and examines their practical significance through 
concrete examples. Emphasis is placed on both unconstrained 
and constrained optimization, with applications that demonstrate 
how mathematical theory translates into effective solutions in 
diverse fields. 
 

Materials and Methods  
Definition 1. Let f: D ⊂ ℝn → ℝ be a function, a D∈A a point, 
and U a neighborhood of a. We say that a is a maximum local 
point for the function f if f(x)  ≤ f(a), x D∀ ∈U. We say that a is a 
minimum local point for the function f if f(x) ≥ f(a), x D∀ ∈U.  

Definition 2. Let f: D ⊂ ℝn → ℝ be a C2 differentiable function 
(i.e. twice differentiable, with all ''

i jx xf  continuous). The hessian 
matrix of the function f is
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We also consider the diagonal minors (sub determinants) of 
order i of Hf :
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Theorem 1 (Unconditional Extremes): Let f: D ⊂ ℝn → ℝ be a 
C2  differentiable function and  a = (a1,a2…,an ) a solution (called 
a stationary point or a critical point) of the system [1]

'
1( ) :{ 0, 1,

ixs f i n= =

Then
a)	 If ∆i > 0, i = 1, n, then a is minimum point for the function f; 
b)	 If (−1)i ∆i > 0, i = 1,n, then a is maximum point for the 

function f; 
c)	 If ∆2<0, then a is not an extremum point for the function f 

and in we say that a is a saddle point 

Remark 1. Consider the second order differential of the function 
f

2 2
2 2

2
1

2
n

i i j
i i ji i j

f fd f dx dx dx
x x x= <

∂ ∂
= +

∂ ∂∑ ∑

As it can be seen in the proof of Theorem 1, an equivalent 
formulation for the minimum situation a) is d2f(a)>0 (Hf is 
positively defined), and for the maximum situation b) d2f(a)<0 
(Hf is negatively defined).

Theorem 2 (conditional extremes) [2,3]
Let f: D ⊂ ℝn → ℝ be a C2 differentiable function. We aim to 
find the extreme points of the function f satisfying the conditions

0, 1,j j mϕ = =

In this scope, we consider the associated Lagrange function

1
( , ) ( ) ( )

m

j j
j

L x f x xλ λ ϕ
=

= +∑

where x=(x1,x2,…,xn) ∈ ℝm and λ =(λ1,λ2,…,λm) ∈ ℝm.

Let (a,λ)=(a1,a2,…,an,λ1,λ2,…,λm) be a solution of the system:

            ' 0, 1,
jxL i n= =

(S1):
     

' 0, 1,
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L i mλ = =   

	             ' 0, 1,
jxL i n= =

	 ⇔:
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In order to study the nature of the point a=(a1,a2,…, an), we 
differentiate the relations (*)
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We write dxn-p+1,dxn-p+2,…dxn in terms of dx1,dx2,…dxn-p, and 
replacing them in the relation d2L(a)= "

, 1 ( )
k l

n
x x k lk l L a dx dx=∑ , we obtain 

the quadratic form
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with the diagonal minors , 1, .k k n p∆ = −

Then
a)	 If ∆k>0, 1, ,i n p= −  then a is conditional minimum point for 

the function f; 
b)	 If (−1)k ∆k>0, 1, ,k n p= −  then a is conditional maximum 

point for the function f. 

An important case of these theorems is the one for functions in 
a single variable:

Theorem 3. Let f: I ⊂ ℝ → ℝ be a derivable function, I an 
open interval, and a ∈ I a solution (called a critical point or a 
stationary point) of the equation f′(x)=0. 

Then
a)	 If there exists ε>0  such that f′(x)<0, ∀ x ∈ (a-ε, a), and 

f′(x)>0, ∀ x ∈ (a,a+ε), the a is a minimum local point of the 
function f. 

b)	 If there exists ε>0  such that ′(x)<0, ∀ x ∈ (a-ε, a), and 
f′(x)>0, ∀ x ∈ (a,a+ε), the a is a maximum local point of 
the function f. 

Remark 2. The easiest way to study the extremes of function in 
one variable is with the help of a table called the variation table 
of the function

Table 1: General variation table
x
f (x)
f '(x)

An improved version of Theorem 3, may be applied, when 
possible:

Theorem 4: Let f: I ⊂ ℝ → ℝ be C2 class function, I is an open 
interval, and let a be a solution of the equation [4]

f ′(x)=0. Then 
a)	 If f ′′(a)>0, then a is a minimum local point of the function f; 
b)	 If f ′′(a)<0, then a is a maximum local point of the function 

f. 

Applications  
Practical Example from Economics: Profit Maximization in a 
Manufacturing Firm

{
{
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Suppose a firm produces a certain product, and the revenue 
function and cost function are as follows: The revenue function:  

V(x)=50x−0,5x2

(where x is the number of units produced and sold)

The cost function:
C(x)=20x+100

Find the maximal value of the profit.

Solution. We want to maximize the profit function, which is: 

P(x) = V(x)−C(x) = −0,5x2+30x−100

We compute its derivative

P′(x)=−x+30

We find the stationary points:

P′(x) = 0 ⇒ −x+30 = 0 ⇒ x = 30.

The variation table is

Table 2: Variation table for P(x)
x 0……30………………..∞
P(x)
P '(x) ++++ 0 -- -- -- -- -- -- -

In conclusion, x = 30 is a local maximum point of the profit 
function.

Remark 3. An elementary solution can be given in this situation, 
considering the maximum point of the second degree function 
ax2+bx+c, with a<0, which is given by the peak of the parbola 
( )2 4, .b

a aV ∆− −

Practical Example from Physics 
Electricity: An RLC circuit in series [5] 

We consider an RLC circuit in series, having a resistance 
R=10Ω, an inductance L=0,5H, a capacitor C=200 μF, a source 
of alternative sinusoidal tension U(t)=100 sin(100t)  

Figure 1: RLC circuit in series

The total impedance:
For ω=100, we have XL=ωL=50 Ω and XC = 1

Cω  = 50 Ω. Because 
XL−XC=0, it results that the circuit is in resonance, and the 
impedance is:

22 10( )L CZ R X X = Ω= + −

The maximum intensity is:

m
max 10ax

U
Z AI = =

The intensity at the moment t is:

i(t)=Imax sin(100t)=10 sin(100t)

We calculate its derivative:

i′(t)=1000 sin(100t)

We compute the critical points:
i′(t)=0 ⇒ cos(100t)=0  ⇒ 100t

2 22 ,k k kπ ππ π+ = + ∈= ± 

2
1 ( ),

100
t k kπ π⇒ = + ∈

Extreme values:
Because the derivative is a sinusoidal function, it’s changing its 
sign and one has maximum values i(t)= +10 A and minimum 
values i(t)= −10 A.

Means inequality

1 2
1 2 , , ,n

n
nx x x

n x x x+ +⋅⋅⋅
≥ ⋅⋅⋅

	         , 1,ia i n+∀ ∈ =

The equality holds when x1= x2= … = xn.

Proof. Without loss of generality, we may assume that
P = x1x2…xn=1

We consider the function f:ℝn→ℝ, setting the product as a 
constant

1 2
1 2( , , , ) n

n
x x x

n
f x x x + + ⋅⋅⋅⋅⋅⋅ =

and we want to determine its extremes, conditioned by the 
relation 
φ(x) = x1x2… xn−1=0

This is a conditional extreme problem. We consider the 
Lagrangian function
L(x,λ)=f(x)+λ(x1x2… xn−1)

For xi=0, 1, ni =  the equality is verified. Let’s assume that P ≠ 0.
We consider the system:



Copyright © Bianca-Elena Burlacu, et al.

J Envi Sci Agri Res, 2025

Volume 3 | Issue 4

www.oaskpublishers.com Page: 4 of 7

           ' 0, 1,
jxL i n= =

(S2):
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1 1,0,
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⇔:       

x1x2…xn = 1

From here, we deduce that

x1 = x2 = … = xn = 1 and λ = 1n−
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Its derivatives are:
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By differentiating the condition at (1,1,..,1):
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In conclusion (1,1,..,1) is a minimum conditional point.

a)	 From all the Rectangles of Constant Perimeter, Determine 
the One of Maximum Area

b)	 From all the Rectangles of Constant Area, Determine the 
One pf Minimum Perimeter 

Solution [6] 
a) Be denoting the sides of the rectangle with L=x>0 and l=y>0, 
and the constant with 2C, we have to solve the conditional 
extreme problem 

max A = max f (x,y) = xy 
x+y = C

But it is a lot easier in this situation to solve this problem 
elementary via the means inequality:

2
x y xy+ ≥

which implies
2

2 4
C Cxy xy≥ ⇒ ≤

The equality holds for x = y = 2
C  when the rectangle is a square.

b) Be denoting the sides of the rectangle with L = x>0 and l = 
y>0, and the constant with P, we have to solve the conditional 
extreme problem

max A = max f (x,y) = x+y 
xy = P

But it is a lot easier in this situation to solve this problem 
elementary via the means inequality:

2
x y xy+ ≥

which implies

2
x y P+ ≥

The equality holds for x = y = P , when the rectangle is a square.

Determine the dimensions of a parallelepipedal box (without 
lid), with the volume equal to a3 such that the surface of 
metal sheet is minimal.

Figure 2: Parallelipiped

Solution [7,8] 
The geometric problem is 

min A = Ll+2Lℎ+2lℎ 
      V = Ll00ℎ=a3 

We denote by x,y and z the sides of the parallelipiped 
min A = min f(x,y,z) = xy+2xz+2yz
      V = xyz = a3

where x,y,z>0
The condition is
φ(x,y,z) = xyz−a3=0.

The Lagrange function is
L(x,y,z,λ) = f (x,y,z)+ λφ(x,y,z)
L(x,y,z,λ) = xy+2xz+2yz+λ(xyz−a3)

We consider the system:

(S):     
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'
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0
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If x≠y then by substracting the first two equations, we obtain:

y−x =−λz(y−x)|:y−x ⇒ 1=−λz
1z
λ

⇒ = −

In the first equation, replacing 1z
λ

⇒ = − , we get z = 0, which is 
false.

In conclusion, we must have x = y, so the system (S) becomes:

       
3 2

2

2 3

4

16

2 0
4 0

a

x z xz
x x x

zx z a
λ

λ

λ

λ

+ + =

+ = ⇒ = −

⇒ ==

Replacing x and z in the first equation, we find the Lagrange 
multiplier

3 42
aλ = −

and the solutions:

3 34 4
2 , ,a ax y z= = =

So, the stationary point is
( )3 3 34 4 4
2 2, ,a a aP =

The Lagrange function is
33 42( , , ) 2 2 ( )aL x y z xy xz yz xyz a= + + − −

We have 2 2 2
'' '' '' 0
x y z

L L L= = = , and

'' '' ''3 3 34 4 42 2 21 , 2 , 2xy xz yza a aL z L y L x= − = − = −

and the differential of second order is
2 '' '' ''( ) 2 ( ) 2 ( ) 2 ( ) 2 4 4xy xz yzd L P L P dxdy L P dxdz L P dydz dxdy dxdz dydz= + + = − − −

By differentiating the condition at the point P, we have:
1 1
2 2dz dx dy= − −

Thus, d2L(P) = 2dx2+2dy2+2dxdy>0, so d2L(P) is positively 
defined, which shows that P is a minimum point.

Determine the dimensions of circular cone of maximum 
volum if it is inscribed in a sphere of radius R.
Solution. The geometrical problem is

2

3
r hmaxV π

=

(ℎ−R)2+r2=R2

We denote by ℎ = x+R. The problem becomes:
2 ( )( , )

3
r x RmaxV f x r π +

= =

conditioned by
x2+r2 = R2

where x,r>0.

Figure 3: Cone inscribed in a sphere

The condition is φ(x,r) = x2+r2−R2

Lagrange’s function is L(x,r,λ) = f(x,r)+λφ(x,r)

2
2 2 2( )( , , ) ( )

3
r x RL x r x r Rπλ λ+

= + + −

We consider the system

          

1

1

1

0
0
0

x

r

L
L
Lλ

=

=

=            

2

2 2 2

2 0
3

2 ( ) 2 0
3

0

r x

x R r

x r R

π λ

π λ

+ =

+
+ =
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The second equation can be written:
( )2 0 |: 0

3
x Rr rπ λ+ + = ≠  

3x Rλ
π

⇒ = − −

From the first equation, we obtain:
2

2 6 18 6x Rr λ λ λ
π π π

−
= = +

Replacing into the third equation, we obtain the second degree 
equation
9λ2+4πRλ = 0

The Lagrange multiplier is the positive solution
4

9
Rπλ = −

Thus, 22
3 3, RRx r= =  and the stationary point is

So, the stationary point is
( )2 2

3 3( , ) , RRP x r= =

Lagrange’s function is
2

2 2 2( ) 4( , ) ( )
3 9

r x R RL x r x r Rπ π+
= − + −

We have 2 2
2 ( )'' ''8 4

9 9 9, 0,x RR R
x r

L L ππ π+= − = − =  and '' 2
3

R
xrL π=

{

⇔(S):{ {
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The differential of second order is
2 2

2 '' 2 '' '' 2( ) ( ) 2 ( ) ( )xzx r
d L P L P dx L P dxdr L P dr= + +

By differentiating the condition, we have:
' ' 0x r dxdx dr dr xrϕ ϕ+ = ⇒ = −

From here 2 24
3( ) 0,R dxd L P π= − < so d2L(P) is negatively defined, 

which shows that P is a maximum point.

Determine the dimensions of cilinder of maximum total area 
if it is inscribed in a sphere of radius R.
Solution. The geometric problem is
maxAt = 2πrℎ+2πr2

ℎ2+(2r)2 = (2R)2

We denote ℎ=2x and we have to determine 
maxAt = f(x,r) = 2πr(2x+r)
conditioned by
x2+r2 = R2

where x,r>0.

Figure 4: Rectangular cilinder inscribed in a sphere

The condition is
φ(x,r) = x2+r2-R2

Lagrange’s function is
L(x,r,λ) = f(x,r)+λφ(x,r)
L(x,r,λ) = 2πr(2x+r)+λ(x2+r2−R2)

We consider the system:

S:    

'

'

'

0
0
0

x

r

L
L
Lλ

=

=

=

           
2 2 2

4 2 0
4 4 2 0

0

r x
x r r

x r R

π λ
π π λ

+ =
+ + =

+ − =

From the first equation 2 0rx π
λ

= − >  and replacing it into the 
second equation we obtain the second order equation

λ2+2πr−4π2=0

We find
1,2 (1 5)λ π= − ±

Because λ<0, we have
(1 5)λ π= − +

Thus,
2

(1 5)
rx

+
=

Replacing x in the third equation, we get

,
1 5 2

2 5 10 2 5

R
x

Rr =
+

=
+

Therefore, the stationary point is
2 1 5( , ) ,

10 2 5 2 5

RRP x r
 + = =
 + 

The Lagrange function is
L(x,r) = 2πr(2x+r)-(1+ 5)π(x2+r2-R2)

We have 2 2
'' '' 42 , 4 2 0
x r

rL L r
p
πλ π λ= = + − =  and '' 4xrL π=  the 

differential of second order is
2 2

2 '' 2 '' '' 2( ) ( ) 2 ( ) ( )xzx r
d L P L P dx L P dxdr L P dr= + +

By differentiating the condition, we have: x
rdr dx= −

Therefore,

( )( )2 2 216
1 5( ) 2 2 5 0,d L P dxπ π
+

= − + + <

so d2L(P) is negatively defined, which shows that P is a maximum 
point.

Conclusions   
The study of function extrema is a fundamental component 
of mathematical analysis, with broad applications in both 
theoretical and applied contexts. Identifying local and global 
maxima and minima enables optimization of processes, modeling 
of natural or economic phenomena, and deeper understanding 
of critical system behavior. Analytical tools such as derivatives 
and extremum conditions, complemented by numerical and 
geometric techniques, provide a robust framework for such 
investigations. The wide applicability of these concepts in fields 
like physics, economics, engineering, and computer science 
highlights the interdisciplinary nature of extremum analysis. 
Ultimately, mastering the methods for determining function 
extrema is a key competency for researchers and professionals 
working with mathematical models.  
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