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ABSTRACT
This work explores the use of Wasserstein Generative Adversarial Networks (WGANs) to generate synthetic sensor data for the prediction of Remaining 
Useful Life (RUL). The C-MAPSS FD001 dataset was first reduced using Principal Component Analysis (PCA) to retain key features. Synthetic data was 
created using WGAN and Conditional WGAN models and validated through statistical tests like the Kolmogorov-Smirnov test and Wasserstein distance. 
Machine learning models trained on the synthetic data showed performance close to those trained on real data. The results highlight that WGAN-based data 
generation can effectively support predictive maintenance by addressing data shortages.
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Introduction
Predicting the Remaining Useful Life (RUL) of industrial 
machinery is critical for reducing downtime and maintenance 
costs. However, the availability of labeled operational data 
is often limited, making it difficult to train reliable machine 
learning models. Synthetic data generation offers a promising 
solution to address this gap. In this work, we use Wasserstein 
Generative Adversarial Networks (WGANs) to generate 
highquality synthetic sensor data based on the C-MAPSS 
FD001 dataset. To enhance data quality and training efficiency, 
Principal Component Analysis (PCA) is applied to reduce the 
dimensionality of the original sensor readings. Both WGAN and 
Conditional WGAN (CWGAN) models are trained to generate 
realistic sensor outputs, which are then evaluated using statistical 
measures such as the Kolmogorov-Smirnov test and Wasserstein 
distance. Finally, machine learning models are trained on both 
real and synthetic datasets to predict RUL, demonstrating that 
synthetic data can achieve comparable performance to real-
world data. This study highlights the potential of WGANs to 

support predictive maintenance applications by generating 
reliable synthetic datasets when real data is scarce.

Literature Review
The use of synthetic data generation in predictive maintenance 
has picked up tremendous pace over the last few years. Thompson 
proposed a diffusion-based data augmentation method for 
multivariate time-series data and showed how it can enhance the 
robustness of predictive maintenance models by making sensor 
inputs more diverse [1]. Likewise, Khosravi applied CTGAN 
to smart manufacturing, where they tackled data sparsity in 
pulp-and-paper production environments [2]. Their strategic 
augmentation method improved prediction performance in 
industrial anomaly detection tasks.

GANs have been successful in generating synthetic data in a 
variety of fields. Tanaka and Aranha laid down a basic framework 
for applying GANs in industry, which was further enhanced by 
Bowles, who used GAN-based augmentation in medical imaging 
to rectify imbalanced datasets and enhance model training [3,4]. 
Arjovsky suggested the Wasserstein GAN (WGAN), a significant 
advancement over traditional GANs, with stable convergence 
and an interpretable loss function via Wasserstein distance [5]. 
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In addition, Mirza and Osindero developed Conditional GANs 
(CGANs), allowing class-conditional generation, providing 
stronger control over data generation a key capability in multi-
sensor contexts [6].

The data used here is based on the work of Saxena and Goebel, 
who constructed the C-MAPSS dataset as a benchmark for 
simulation of turbofan engine degradation [7]. The dataset 
has since become a reference for RUL prediction. Fernandez 
addressed the challenge of the domain gap by using domain 
adaptation with GANs as a way of enhancing transferability 
between operating conditions, an idea very similar to our 
intended future work [8].

Meta-learning and few shot learning techniques have also 
been investigated. Schwendemann introduced metalearning 
models with generative methods for few-shot RUL prediction 
and demonstrated that models can generalize well even with 
few data [9]. Likewise, Coble and Goebel introduced a model-
based prognostic method with concurrent damage progression, 
combining physical modeling with datadriven techniques [10].

Anomaly detection by GANs was explored by Zimmermann 
and Rupprecht, specifically within the aviation sector, where 
generative models aided in detecting discrepancies from normal 
operation in time-series data [11]. Tornede put strong focus on 
multi-task learning for RUL prediction under noisy labeling 
conditions, which is a parallel to our problem of producing 
informative labels for synthetic sequences [12].

A thorough review by Zhao discussed deep learning techniques 
for RUL estimation, emphasizing the prevalence of architectures 
such as LSTM and CNNs [13]. Zhang investigated ensemble 
learning and data augmentation methods, suggesting hybrid 
models to enhance prediction accuracy in prognostics [14]. Zhu 
lastly created a deep generative model with attention mechanisms 
for RUL estimation, highlighting the advantages of integrating 
temporal modeling with generative synthesis [15].

Together, these studies indicate a distinct trend in predictive 
maintenance research from basic models to sophisticated 
generative techniques justifying the incorporation of WGANs, 
CWGANs, and PCA in our suggested methodology for 
enhancing RUL prediction in industrial systems.

Dataset
The Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) dataset was developed by NASA to support 
research in prognostics and health management (PHM). It 
simulates the degradation of aircraft engines under various 
operating conditions and fault modes. Each engine operates 
until failure, providing data suitable for Remaining Useful Life 
(RUL) prediction tasks.

A. Dataset Variants
C-MAPSS is divided into four subsets: FD001, FD002, FD003, 
and FD004. Each subset differs in terms of the number of 
operating conditions and fault modes.
•	 FD001: Single operating condition, single fault mode 

(simplest scenario).
•	 FD002: Multiple operating conditions, one fault mode.

•	 FD003: Single operating condition, multiple fault modes.
•	 FD004: Multiple operating conditions, multiple fault modes.

This study focuses on FD001, making it easier to design and 
validate models for early-stage RUL prediction.

B. Data Structure
Each record in the FD001 subset includes:
•	 Unit Number: Identifier for each engine.
•	 Time in Cycles: Operational cycles from the start until failure.
•	 Operational Settings: Three operational settings that capture 

different flight conditions.
•	 Sensor Measurements: 21 sensor readings monitoring 

various physical and operational parameters of the engine.

C. Rul Labeling
The Remaining Useful Life (RUL) for each cycle can be 
computed by subtracting the current cycle number from the 
maximum cycle number for that engine. Accurate RUL labels 
allow the dataset to be used in supervised learning tasks.

D. Importance in Research
The C-MAPSS dataset has become a widely used benchmark in 
predictive maintenance. Its realistic simulation of engine wear, 
availability of rich sensor data, and clear failure labels make it 
ideal for developing, testing, and comparing machine learning 
models for health monitoring and RUL estimation.

Methodology
This study follows a structured approach to generate synthetic 
data and predict the Remaining Useful Life (RUL) of aircraft 
engines using the C-MAPSS FD001 dataset. The complete 
process is divided into several key steps as given below.

A. Data Preprocessing
The raw C-MAPSS FD001 dataset is first cleaned by removing 
unnecessary columns and handling missing values. Since sensor 
readings vary widely in scale, StandardScaler is applied to 
normalize the data. Principal Component Analysis (PCA) is then 
used to reduce the dimensionality while preserving 95.

B. Synthetic Data Generation using WGAN
A Wasserstein Generative Adversarial Network (WGAN) is used 
to generate realistic synthetic sensor data. The WGAN consists 
of two networks:
•	 Generator: Takes random noise as input and tries to produce 

realistic sensor data.
•	 Critic: Distinguishes between real and synthetic data, 

guiding the generator to improve.

During training, the critic and the generator are optimized 
alternately. Conditional WGAN (CWGAN) is also implemented, 
allowing sensor-specific data generation by conditioning sensor 
indices. RMSprop optimizers and weight clipping are used to 
stabilize training and enforce the Lipschitz constraint.

C. Synthetic Data Validation
To ensure that the synthetic data closely resemble the real sensor 
data, statistical validation techniques are applied:
•	 Kolmogorov-Smirnov (KS) test: Measures the similarity of 

distributions.
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•	 Wasserstein distance: Quantifies the distance between real 
and synthetic data distributions.

•	 Anonymity score: Assesses how difficult it is to distinguish 
synthetic data from real data.

Additionally, visual validation is performed using kernel density 
estimate (KDE) plots and t-SNE (t-Distributed Stochastic 
Neighbor Embedding) for low-dimensional visualization.

D. Remaining Useful Life (RUL) Labeling
Both real and synthetic datasets are labeled with RUL values. 
The RUL is calculated as the difference between the maximum 
cycle count for each engine and the current cycle number. This 
transforms the problem into a supervised regression task.

E. Model Training and Evaluation
Two machine learning models are trained separately on both 
real and synthetic datasets to predict the Remaining Useful Life 
(RUL) of engines. Linear Regression is used as a baseline model 
due to its simplicity and interpretability, while the Random 
Forest Regressor, an ensemble learning method, is employed 
to better capture complex, non-linear relationships in the data. 
The models are evaluated using two key metrics: Root Mean 
Squared Error (RMSE), which measures the average prediction 
error, and R2 Score, which indicates how much of the variance 
in the RUL values the model is able to explain. By comparing 
the performance of models trained on synthetic data with those 
trained on real data, the quality and reliability of the synthetic 
dataset generated are assessed.

F. Final Analysis
The performance of models trained in synthetic data is compared 
to those trained in real data. KDE plots and t-SNE visualizations 
confirm that synthetic samples closely mimic real-world sensor 
behavior. The results show that models trained on synthetic 
data achieve performance comparable to those trained on real 
data, demonstrating the effectiveness of WGAN-based data 
generation for predictive maintenance tasks.

V. Results
This section evaluates the performance of three regression 
models—Linear Regression, Random Forest, and Gradient 
Boosting—trained on real, synthetic, and combined datasets 
for Remaining Useful Life (RUL) prediction. Performance 
is assessed using Root Mean Squared Error (RMSE) and the 
Coefficient of Determination (R² score).

Table 1: Model Performance on Real, Synthetic, and 
Combined Data

Model & Dataset RMSE R2 Score
Real — Linear Regression 48.11 0.49
Real — Random Forest 39.94 0.65
Real — Gradient Boosting 42.09 0.61
Synthetic — Linear Regression 15.53 0.66
Synthetic — Random Forest 15.85 0.65
Synthetic — Gradient Boosting 15.65 0.66
Fine-Tuned RF (Combined Data) 40.00 0.65

A. Performance on Real Data
Models trained exclusively on real-world sensor data showed 
moderate performance. Random Forest yielded the best results 
with an RMSE of 39.94 and an R² score of 0.65, indicating a 
reasonably good fit. Linear Regression underperformed with an 
RMSE of 48.11 and an R² of 0.49, suggesting limited capacity to 
capture the non-linear dynamics in the data. Gradient Boosting 
also performed comparably with an RMSE of 42.09 and R² of 
0.61.

B. Performance on Synthetic Data
Training on synthetic data generated via a generative model 
(e.g., WGAN/CWGAN) led to significantly better performance 
across all models. RMSE values hovered around 15.5, and R² 
scores reached up to 0.66, suggesting that the synthetic dataset 
was easier to model and exhibited lower variance or noise 
compared to the real-world dataset. Both Random Forest and 
Gradient Boosting showed strong generalization capabilities 
under these conditions.

C. Fine-Tuning on Combined Data
To leverage the strengths of both datasets, a fine-tuned
Random Forest model was trained on the combined dataset (real 
+ synthetic). This model achieved an RMSE of 40.00 and an 
R² score of 0.65, matching the best performance on real data. 
This suggests that synthetic data contributed positively to the 
learning process without degrading performance, thus validating 
the potential of data augmentation in RUL prediction.

D. Observations
•	 Synthetic data enhanced model performance, especially 

during initial training phases.
•	 Combining synthetic and real data maintained or slightly 

improved real-world generalization performance.
•	 Tree-based models (Random Forest, Gradient Boosting) 

consistently outperformed Linear Regression, confirming 
the importance of capturing non-linear relationships.

These results reinforce the idea that synthetic data can be a 
valuable tool in predictive maintenance applications, particularly 
in scenarios where labeled real-world data is limited.

Future Scope
•	 Domain Adaptation Techniques: Implement domain 

adaptation methods to minimize the domain gap between 
synthetic and real data, enhancing model transferability and 
robustness.

•	 Real-Time Predictive Maintenance Systems: Extend the 
current framework into a real-time deployment pipeline 
by integrating it with industrial IoT platforms and CMMS 
(Computerized Maintenance Management Systems).

•	 Future work can explore the use of advanced deep learning 
architectures such as LSTMs, Transformers, or Temporal 
Convolutional Networks (TCNs) for capturing complex 
temporal dependencies in sensor data for RUL prediction.
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