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ABSTRACT
We present a modular geometric framework that bridges recent advances in Ricci flow dynamics with the General Theory of Singularity (GTS), aiming 
to tackle the longstanding Hodge Conjecture in algebraic geometry. By formulating modular recurrence relations on topological quantum geometries, we 
incorporate discrete (modular) flux quantization into the Ricci flow equations. This yields a definition of a Modular Quantum Ricci Tensor (QRT) on four-
dimensional curved manifolds, which includes contributions from torsion and quantized flux. Using GTS – an extension of Einstein’s gravity that introduces 
an intrinsic spacetime torsion to regularize singularities – we impose torsion-constrained conditions on cohomology cycles.

These torsion cycles are given explicit geometric interpretation as finite-order (modular) elements in homology, providing a novel mechanism by which 
certain cohomology classes become “algebraic.” We link this framework to Calabi–Yau manifolds and mirror symmetry, showing how modular flux 
constraints naturally align with discrete invariants like Hodge numbers and how algebraic cycles might be captured via derived categorical structures. 
Figures illustrate toroidal (donut-like) embeddings that isualize the chained modular structure of the flow in discrete time. The results suggest that combining 
modular Ricci flows with torsion physics can smooth out singularities while enforcing integrality conditions on curvature and flux – a synergy that could 
support a constructive approach to proving the Hodge Conjecture. We conclude with implications for string theory compactifications and outline future work 
needed to rigorously validate this approach in both mathematics and physics.

Introduction
The Hodge Conjecture is a central unsolved problem in modern 
algebraic geometry, positing a deep connection between the 
continuous shape of a complex algebraic variety and its discrete 
subvarieties (algebraic cycles). In simple terms, the conjecture 
asserts that certain topologically-defined classes (so-called 
Hodge classes) on a complex projective manifold are in fact 
algebraic, meaning they can be represented as exact linear 
combinations of subvarieties. First formulated by W.V.D. Hodge 
in the mid-20th century, this conjecture has resisted proof for 
decades and is recognized as one of the Clay Millennium Prize 
Problems, underscoring its importance and difficulty. Traditional 
approaches to the Hodge Conjecture rely on advanced tools in 
algebraic geometry and Hodge theory, yet so far only special 
cases (such as certain low-dimensional varieties or those with 
special symmetry) have been proven. The general case remains 
elusive, in part because it involves the interplay of continuous 

invariants (harmonic forms in a given Hodge decomposition) 
and discrete algebraic data (integral classes coming from 
subvarieties).

In parallel, theoretical physics and differential geometry 
have provided new perspectives on problems of this nature. 
Notably, techniques from Ricci flow (the process of deforming 
a Riemannian metric in proportion to its Ricci curvature) have 
revolutionized the understanding of geometric structures, as 
exemplified by Perelman’s proof of the Poincaré conjecture 
via Ricci flows that can develop and resolve singularities. 
More recently, physicists have speculated on whether extra 
structures from physics – such as quantized fluxes, higher-
dimensional manifolds, and torsion in spacetime – could impose 
the kind of discrete conditions needed to tackle problems 
like the Hodge Conjecture. For example, one novel approach 
(proposed by Rizzo (2025) and collaborators) suggests using a 
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higher-dimensional Einstein–Cartan theory (general relativity 
with torsion) supplemented by topological flux quantization to 
enforce the algebraicity of Hodge classes. In Einstein–Cartan or 
related theories, torsion provides additional degrees of freedom 
in geometry that can “absorb” singular behavior and yield 
quantized constraints on curvature. Such ideas effectively blend 
algebraic geometry with theoretical physics, hinting that adding 
discrete (quantized) structures to a continuous geometric flow 
might resolve deep mathematical conjectures.

This work situates itself at this interdisciplinary juncture. We aim 
to develop a Modular Ricci Flow framework that integrates the 
General Theory of Singularity (GTS) – a recent theory extending 
general relativity – with modular arithmetic constraints, in order 
to create a new pathway toward proving the Hodge Conjecture. 
Modular Ricci Flow refers to a Ricci flow of geometric data 
that is periodically constrained by modular recurrence relations: 
at certain stages, the evolving geometric quantities are taken 
“modulo” some discrete symmetry or value, effectively restarting 
or adjusting the flow in a controlled, repetitive manner. These 
modular adjustments can enforce integrality conditions (e.g., 
curvature quanta, flux units) throughout the flow. The inclusion 
of GTS is crucial: GTS modifies classical differential geometry 
by allowing a torsion component in the affine connection of 
spacetime. In doing so, it promises to eliminate or regularize 
singularities by “twisting” the geometry rather than letting it tear 
or blow up.

Additionally, GTS naturally incorporates topological flux 
quantization – the idea that certain charges or fluxes must be 
integer-valued because they arise from the topology of extra 
dimensions. These integral flux conditions resemble the kind of 
discrete data (e.g., integer cohomology classes) that appear in 
the statement of the Hodge Conjecture.

By merging these ideas, we propose that a torsion-constrained 
Ricci flow on a complex manifold could evolve the metric in 
such a way that any would-be counterexample to the Hodge 
Conjecture is dynamically removed. Intuitively, as the metric 
evolves, torsion degrees of freedom (subject to quantization) 
could “squeeze” a harmonic form that is not initially algebraic, 
forcing it to localize around an actual algebraic cycle or otherwise 
decay. In this paper, we formalize this picture and develop the 
necessary theoretical components step by step:

•	 We introduce modular recurrence relations in a geometric 
context, inspired by modular arithmetic and “chained” 
computation models, to periodically identify or constrain the 
evolving geometry. This builds on the work of J.K. Edwards 
(2024), who visualized a “chained donut” (toroidal) model 
for modular computation in recursive algorithms. We adapt 
these ideas to a continuous Ricci flow setting, essentially 
visualizing the evolving 4-manifold metric as moving 
through a series of toroidal configurations that repeat 
modulo of some equivalence. Literally, think about the 
modularity “tensing” up. This is why we call it tensor flow.

•	 contributions from quantized fields (flux) and torsion. This 
tensor acts as an effective Ricci curvature that encodes 
quantum corrections or discrete jumps. The derivation of 
the QRT begins with an affine connection that includes 
torsion, leading to modified Einstein equations where an 

extra torsion-induced term appears on the right-hand side 
as an energy-momentum source. In this framework, this 
extra term is interpreted as part of the geometric curvature 
itself, and is moved to the left-hand side as a correction to 
the Ricci tensor. The result is a tensor that changes only 
in quantized increments, reflecting a piecewise constant 
curvature associated with the modular steps of the flow. 
 
Let Rμv denote the classical Ricci tensor and Hμλp be a torsion 
3-form. The Modular Quantum Ricci Tensor can be defined 
as:

	 Specifically, the torsion-induced corrections can be 
expressed in terms of the torsion 3-form Ημλρ. The exact form 
of these corrections would depend on the specific theory 
and the way torsion is incorporated into the geometry.

	
	 To make this more concrete, let’s assume a general form for 

the torsion-induced corrections. The QRT can be written as:

	 Here, α and β are constants that depend on the specific 
model, and λ∇  denotes the covariant derivative.

	 This tensor reflects the discrete influence of torsion on 
curvature at each modular reset, providing a piecewise 
constant curvature associated with the modular steps of the 
flow.

•	 This tensor reflects the discrete influence of torsion on 
curvature at each modular reset.

•	 We explore torsion cycles and modular cohomology, 
providing a geometric picture for how torsion (in the 
algebraic topological sense: elements of finite order in 
homology or cohomology) manifests in our framework. A 
key insight from string theory and topology is that a torsion 
homology class can be represented as the difference of two 
geometric cycles that are “homologically the same” for 
real coefficients but differ by a finite, discrete twist. For 
example, one can describe a torsion 3-cycle in a Calabi–Yau 
threefold as the difference of two calibrated 3-dimensional 
submanifolds of equal volume. We leverage such 
interpretations to argue that when the Modular Ricci Flow 
reaches a steady state (or a periodic orbit), the remaining 
degrees of freedom in cohomology are precisely those 
discrete torsion cycles. Moreover, we argue these torsion 
cycles correspond to would-be counterexamples to Hodge 
(pure Hodge classes that are not generated by algebraic 
cycles), and that the presence of torsion and flux forces 
these to vanish or become algebraic.

After developing the theory, we provide a Visual Illustration 
of the modular flow using toroidal embeddings. A figure is 
included to depict two linked tori representing a recurring 

( )
vR  + (quantum corrections from flux) Q

vRµ µ=

+ (torsion-induced corrections)

( )
vR + HQ

v v vR H Hλρ λ
µ µ µλρ λ µα β= + ∇
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modular cycle in the flow – an analogue of the chained donut 
in continuous geometry. We then discuss how this framework 
connects to known themes in algebraic geometry and physics, 
notably Calabi–Yau manifolds, mirror symmetry, and derived 
categories. In string theory, Calabi–Yau spaces (which are 
Ricci-flat and Kähler) serve as compactification manifolds 
and are associated with quantized flux conditions and discrete 
moduli. Mirror symmetry, a phenomenon from string theory, 
exchanges Hodge numbers of Calabi–Yau pairs (for a mirror 
pair of threefolds, 1,1 2,1( ) ( )h X equals h Y  and vice versa) and suggests 
deep symmetry between their subvariety structures. We will see 
that our modular flow, by enforcing quantized curvature and 
torsion, naturally aligns with such discrete invariants, hinting at 
a new way to understand why mirror symmetry holds and how 
it might be used to tackle Hodge-type questions. Additionally, 
we touch on how our approach might be interpreted in terms of 
homological mirror symmetry (Kontsevich’s derived category 
formulation), wherein algebraic cycles correspond to objects in 
derived categories of coherent sheaves: the presence of torsion 
flux could correspond to specific objects (e.g., B-branes with 
discrete charges) in the derived category.

Finally, we summarize the implications of this unified 
framework and outline the future work required to turn these 
ideas into a concrete proof of the Hodge Conjecture. This 
includes suggestions for toy models, special cases (such as K3 
surfaces or toric hypersurfaces) where computations can be 
done explicitly, and the potential impact on other problems (e.g., 
Tate’s conjecture, general singularity classification, or even 
computational complexity via analogies to the P vs NP problem 
that modular computation was originally applied to).

In the following sections, we proceed with the development of 
the theory, keeping in mind both the mathematical rigor required 
and the physical intuition that guides it.

Theory and Formulation
Modular Recurrence in Topological Quantum Geometry
A central concept in our framework is that of modular recurrence 
on a geometric flow. By this we mean an iterative process where, 
after a certain evolution, the system’s state is mapped back or 
identified in a way analogous to taking a value modulo some 
base. In computational terms, this is reminiscent of running an 
algorithm in loops, or performing arithmetic where numbers 
wrap around upon reaching a modulus. J.K. Edwards introduced 
a version of this idea in the context of computation and network 
topology: a “chaining Ricci flow torus” model for modular 
computation. There, a toroidal structure (a donut shape) was 
used to represent how a process can loop back on itself with 
a twist, enabling potentially infinite scalability in a controlled, 
periodic way. We adapt this idea to a topological quantum 
geometry, meaning a geometric space (manifold) that carries not 
only the usual continuous structure but also discrete data from 
quantum topological sources (flux, charge, etc.).

From a topological viewpoint, this process can be visualized 
by lifting the Ricci flow to a covering space where these 
periodic identifications are absent, then projecting back down. 
The covering space in our case can be thought of as an infinite 
chain of tori – each torus representing the state of the manifold 
in one period of the flow, and being linked to the next torus 

by the modular mapping. The “chained donut” visualization 
emerges from this: each cycle of the flow the manifold’s state 
returns (modulo diffeomorphism and discrete adjustments) to 
a configuration similar to a previous one, forming a loop. The 
next cycle is attached to the previous one, forming a chain (see 
Figure 1 below). This viewpoint leverages an analogy: just as a 
closed time-like curve in relativity loops back in time, a closed 
modular flow curve loops the geometry back to a prior state after 
a discrete evolution step.

It’s important to note that modular recurrence by itself does 
not guarantee any particular outcome regarding the Hodge 
Conjecture – it’s a structural tool. By constraining the flow to 
periodically satisfy certain conditions, we ensure infinite process 
without divergence (the flow doesn’t blow up because we keep 
resetting certain quantities) and integrality of specific invariants. 
The hope is that by the time the flow converges (or cycles) in 
the long run, the only degrees of freedom left unconstrained 
by these conditions correspond to genuine algebraic cycles. In 
other words, the flow, guided by modular recurrences, will “use 
up” any non-algebraic portions of a Hodge class over repeated 
cycles, perhaps by radiating them away as curvature or flux.

The General Theory of Singularity and Flux Quantization
The General Theory of Singularity (GTS) developed by Rizzo 
and others provides the next key ingredient. GTS is a geometric 
theory extending Einstein’s general relativity by relaxing the 
usual assumption of a symmetric connection. In classical general 
relativity, the affine connection (Levi-Civita connection) is 
torsion-free, meaning it has no intrinsic twist – parallel transport 
around an infinitesimal loop only depends on curvature, not on 
any “twist” of space itself. GTS allows spacetime to have an 
antisymmetric part of the connection, i.e., a torsion tensor in 
addition to curvature.

The covariant derivative of the torsion tensor T λ
µν  can be 

expressed as ;T λ
µν . This tensor provides additional information 

about the geometry of the manifold, particularly in the context of 
spaces with torsion. Let’s break down what this means and how 
it relates to curvature.

Torsion Tensor
The torsion tensor T λ

µν  is defined as:

'T λ λ λ
µν µν µν= Γ −Γ

where λ
µνΓ  are the components of the affine connection with 

torsion.

Covariant Derivative of Torsion
The covariant derivative ;T λ

µν  involves differentiating the torsion 
tensor with respect to the coordinates while accounting for the 
connection with torsion. This can be written as:

;T T T T Tλ λ λ ρ σ λ σ λ
µν µ νρ µσ νρ µν σρ µρ νρ= ∂ + Γ −Γ −Γ

Before proceeding to spin, as we work along the ricci flow 
curvature, we must also refine the curvature of the Torison.
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Relation to Curvature
RA In the presence of torsion, the Riemann curvature tensor 
Rλ
µνρ  is modified to include torsion terms. The modified Riemann 

tensor can be expressed as:

This shows that the curvature tensor depends not only on the 
affine connection but also on the torsion tensor. The presence of 
torsion introduces additional terms that affect the curvature of 
the manifold.

Practical Implications
The covariant derivative of the torsion tensor ;T λ

µν  provides 
insights into how torsion varies across the manifold. This is 
crucial in theories where torsion plays a significant role, such as 
in supergravity and string theory. The modified curvature tensor 
Rλ
µνρ  reflects the combined effects of both the connection and the 

torsion, leading to a richer geometric structure.

In summary, ;T λ
µν  is a key quantity in understanding the geometry 

of manifolds with torsion. It complements the curvature tensor 
by providing information about the variation of torsion, which in 
turn affects the overall curvature of the space.

Physically, introducing torsion can be associated with spin or 
angular momentum density (as in Einstein–Cartan theory), but 
GTS takes it further: torsion is treated as a fundamental aspect 
of spacetime geometry, not just sourced by matter. One of the 
major claims of GTS is that torsion can resolve singularities. 
Rather than metric distances shrinking to zero or blowing to 
infinity (as happens in a singularity like a black hole or a Big 
Bang in classical GR), the presence of torsion can “smooth out” 
the would-be singular point by twisting space in such a way 
that the curvature becomes finite. In essence, GTS can avert 
the formation of infinite curvature by converting that would-
be infinity into a topologically nontrivial twisting (imagine a 
puncture replaced by a screw-like defect). This mechanism is 
highly appealing for a Ricci flow, since Ricci flows typically 
develop singularities (like pinching off a sphere or neck pinch in 
a manifold). Incorporating GTS torsion into the Ricci flow means 
that whenever the curvature grows too large, torsion activates to 
regularize it, potentially allowing the flow to continue through 
what would otherwise be a singular time.

Equally important is the concept of modular flux quantization in 
GTS. In higher-dimensional extensions of spacetime, GTS often 
considers extra compact dimensions (similar to Kaluza–Klein 
or string theory scenarios). Torsion in those extra dimensions, 
or certain boundary conditions, give rise to integral topological 
invariants. For example, one might have a 3-form field $H$ (like 
a field strength of a B-field in string theory) whose periods $\
int_{\Sigma} H$ over 3-cycles $\Sigma$ are constrained to be 
integers – these are flux quanta. GTS posits that many seemingly 
arbitrary constants of nature (like electric charge or coupling 
constants) are actually fixed by such topological quantization 
conditions. In simpler terms, nature’s parameters are “modular”: 
an electron’s charge is an integer multiple of a smallest charge, 
space’s possible configurations are restricted to certain discrete 
families, etc., due to the requirement of consistency in a 
torsionful, multi-dimensional geometry.

Translating this to our mathematical problem: flux quantization 
can impose that certain cohomology classes on our variety $X$ 
are integral. This is reminiscent of the Hodge Conjecture’s 
claim, except Hodge says a class (of type $(p,p)$) should be 
not just integral but actually representable by an algebraic 
cycle. However, integrality (being in the image of $H^{2p} 
(X, \mathbb{Z}) $) is a necessary condition for being an 
algebraic cycle class. In fact, one weaker form is the Integral 
Hodge Conjecture, which asks if every integral Hodge class is 
algebraic. We are essentially engineering the situation where the 
Ricci flow + torsion forces any would-be Hodge class to first 
become integral (a consequence of flux being quantized) and 
then become representable by some geometric object due to the 
dynamics.

How exactly do we integrate GTS into the Ricci flow? We 
modify the flow equation to include torsion. So,

To integrate the Generalized Torsion String (GTS) into the 
Ricci flow, we modify the flow equation to include the effects of 
torsion. Let’s go through the steps and equations systematically.

Modification of the Ricci Tensor with Torsion
Let Tλμν be a torsion 3-form (totally antisymmetric, as often 
considered in string theory). The presence of torsion modifies 
the Ricci tensor. If ∇ is the Levi-Civita connection ∇  and is 
the connection with torsion, the modified Ricci tensor can be 
expressed as:

where Ημυρ = Τμυρ in appropriate units (here we assume the 
torsion is given by a 3-form H). This formula indicates that 
torsion contributes an effective negative-definite term to the 
Ricci curvature.

Einstein Field Equations with Torsion
In Einstein’s equations, the torsion term acts like an energy-
momentum source. The Einstein field equations with torsion can 
be written as:

where (torsion)Tµν  is an effective stress-energy due to torsion (coming 
from terms like H	μλρ H

λρ
ν ) and Aeff is an effective cosmological 

constant.

For our purposes, we move the torsion term to the left and absorb 
it into a modified curvature. We define the Quantum Ricci tensor 
as:

with the understanding that H (and thus this correction) is nonzero 
only in certain discrete circumstances (when flux is present) and 
typically H itself must satisfy integral constraints (each flux 
through a cycle is N ∈ Z). Thus, ( )QRµν  changes discretely when a 
flux quantum jumps.

vR T Tλ λ λ λ σ λ σ λ σ
µνρ µρ µ νρ νρ µρ µσ νρ νσ µρ= ∂ Γ −∂ Γ +Γ Γ −Γ Γ −

1( ) ( ) ,
4

R R H H λρ
µν µν µλρ ν∇ = ∇ −

(torsion)1 ,
2 effgR Rg Tµν µν µν µν− + Λ =

( ) 1: ,
4

QR R H H λρ
µν µν µλρ ν= −
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Modified Ricci Flow Equation
We will use this ( )QRµν  in the flow equation. Intuitively, whenever 
curvature tries to become large, H can activate (being sourced 
by high curvature regions or externally imposed by topological 
considerations) and reduce the effective curvature. The modified 
Ricci flow equation becomes: 

Summary
In summary, the integration of GTS into the Ricci flow involves 
modifying the Ricci tensor to include torsion contributions. This 
results in a Quantum Ricci tensor ( )QRµν  that changes discretely 
with flux quanta. The modified Ricci flow equation then uses 
this Quantum Ricci tensor to evolve the metric, incorporating 
the effects of torsion and flux. This approach provides a way to 
handle singularities and enforce discrete invariants in the flow, 
aligning with themes in algebraic geometry and string theory.

which we dub the Modular Ricci Flow. The word “Modular” 
reflects two aspects: (1) the curvature now includes quantized 
contributions (like pieceswise constant terms from flux quanta), 
and (2) we still are applying the modular recurrences at certain 
intervals to enforce those quanta to be integers (for instance, 
we might allow $H$ to change only when a certain integral of 
curvature hits a threshold, mimicking a quantum jump of one 
unit).

Finally, we highlight how the flux quantization enters as a 
constraint: Suppose $X$ has some nontrivial $p$-cycles $\
Sigma$ (for example, a 2-cycle or 3-cycle) that a flux field 
can wrap. The flux quantization says $\int_{\Sigma} H = k$, 
an integer. In the flow, as the metric changes, the volume of 
$\Sigma$ and normalization of $H$ might change, but at the 
modular reset times $t_n$ we readjust so that this integral stays 
an integer. In effect, $H$ might be dynamically adjusted (via its 
Bianchi identity or field equation) such that if it were to drift 
away from integrality, a small instanton or torsion defect occurs 
to push it to the nearest integer. This is a physically-motivated 
picture: in string theory, a varying flux that is not integral would 
be inconsistent, so the system shifts by nucleating branes or 
other defects that change the flux by an integer. In our geometric 
flow, we assume a similar mechanism: the system self-corrects 
to maintain integrality. These corrections are the discrete “kicks” 
in the flow, aligning with our modular recurrence concept.

In summary, by blending GTS with our flow, we get a Ricci flow 
with torsion and flux that (a) can continue through would-be 
singularities (because torsion prevents blow-up) and (b) enforces 
discrete conditions (flux integrality) throughout. This sets the 
stage for considering specific consequences for cohomology 
classes on $X$.

The Modular Quantum Ricci Tensor (QRT) in 4D Manifolds
Definition (Modular Quantum Ricci Tensor)
Consider a Riemannian (or pseudo-Riemannian) 4-manifold (M, 
g) equipped with a 3-form H (torsion) that is harmonic up to 
quantization conditions (its periods are integers). The Quantum 
Ricci Tensor Qμν is defined as:

where indices are raised and lowered by 9. We say this tensor is 
modular if H is quantized, i.e., all integrals of H over 3-cycles 
(and integrals of its dual over 1-cycles, etc.) are integers or 
otherwise constrained to a discrete allowed set.

Simplification in Four Dimensions
In four dimensions, Hμνρ has only one independent component 
up to duality (since H is a 3-form on a 4-manifold, it is dual to a 
1-form or a gradient of a pseudoscalar). We can thus simplify the 
expression in many cases. For example, if the torsion is derived 
from a scalar θ (sometimes called an axion in physics) such that 
H = *dθ (the Hodge dual of the derivative of θ), then:

This has the form of a stress tensor of a scalar field θ. In that 
scenario, the Quantum Ricci Tensor Qμν becomes:

Interpretation
This makes it evident that if θ is constant (no torsion), then Qμν 
reduces to Rμν. If θ varies, Qμν deviates from Ruv in a way that 
reflects an energy-momentum contribution from θ. However, 
since we are not moving to the right side of Einstein’s equation, 
we are instead treating the torsion-induced term as a modification 
of the curvature itself.

Summary
The Modular Quantum Ricci Tensor Qμν encapsulates the effects 
of both the classical Ricci curvature and the torsion fluxes. It 
provides a way to incorporate discrete invariants and quantized 
fluxes into the geometry of the manifold, aligning with themes in 
algebraic geometry and string theory. This tensor is particularly 
useful in scenarios where torsion plays a significant role, such 
as in supergravity and string theory, and it offers a framework 
for understanding how discrete jumps in flux can affect the 
curvature of the manifold.

The Modular Ricci Flow equation then is $\partial_t g_{\
mu\nu} = -2 Q_{\mu\nu} $. One may regard this as a Ricci 
flow on a principal $G$-bundle with connection, where the 
connection’s curvature (flux) contributes to the metric flow. 
Indeed, mathematically, such flows have been studied: for 
example, the Ricci flow with torsion appears in the context of 
the Pluriclosed flow on complex manifolds (also known as the 
H-Stable flow or Bismut flow), where the torsion is taken as the 
Bismut connection’s torsion on a Hermitian manifold. Our flow 
can be seen as a version of pluriclosed flow in the special case 
the complex structure is fixed and the torsion is exact.

One notable property of including the $H^2$ term is that it tends 
to slow down or halt the collapse of certain cycles. For instance, 
in a classic Ricci flow on a 3-dimensional manifold, a neck pinch 
singularity might form where a $S^2 \times S^1$ throat collapses 
(like in the Ricci flow of a dumbbell-shaped surface). If one has 

( )( )
2 ( ).Qg t

R t
t

µν
µν

∂
= −

∂

1( ) ,
4 VQ R g H H λρ

µν µν µλρ= −

21 1 1( )( ) ( ) .
4 2 4VH H gλρ

µλρ µ ν µνθ θ θ= ∂ ∂ − ∂

21 1 ( ) .
2 4

Q R gµν µν µ ν µνθ θ θ= − ∂ ∂ + ∂
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flux threading the $S^1$, that flux (being quantized) will resist the 
collapse beyond a certain point, because squeezing the $S^1$ too 
much would force a jump in the quantum number (either the flux 
quantum must go to zero or a new source appears). This creates a 
scenario where the metric might approach a configuration where 
the throat is thin but not singular, stabilized by a minimal radius 
enforced by the torsion. In our 4D complex manifold context, 
similar logic applies: cycles that carry nonzero discrete torsion 
or flux cannot just vanish; they are stabilized at a small but finite 
size by the presence of that quantized flux. Therefore, the flow 
might approach a soliton or fixed point where curvature from 
the metric is exactly balanced by curvature from the torsion. 
Soliton solutions to Ricci flow (Ricci solitons) are well-known 
as models of singularity formation; here we have Ricci–torsion 
solitons, possibly providing non-singular end-states for flows.

How does all of this relate back to the Hodge Conjecture? The link 
is through cohomology classes. A complex manifold has Hodge 
decomposition on cohomology: $H^{p,q}(X)$. A class $\alpha \
in H^{p,p}(X)$ being a Hodge class means it’s in the middle of 
that decomposition (like a $(p,p)$ form among $H^{2p}$). The 
conjecture wants this class to equal $[\mathcal{Z}] $, the class 
of some algebraic cycle $\mathcal{Z}$, which in de Rham terms 
means a delta-like form Poincaré dual to $\mathcal{Z}$. How 
could a geometric flow help in showing this? Imagine starting 
with a harmonic representative of $\alpha$ with respect to the 
initial metric $g (0) $.

Under the flow $g(t)$, this form $\alpha(t)$ will evolve (not 
necessarily staying harmonic unless we project it appropriately). 
If the flow converges to a nice metric $g(\infty) $ (or a periodic 
cycle), one could compare $\alpha (0) $ and $\alpha(\infty) $. 
If $\alpha(\infty) $ is extremely peaky, localized around some 
submanifold, that would be evidence it’s becoming Poincaré 
dual to an actual cycle. Torsion and modular effects might 
drive $\alpha(t)$ to concentrate. In particular, the presence of a 
nonzero torsion $H$ often implies the existence of new instanton 
solutions (in gauge theory terms) that can source changes in the 
cohomology. For example, in string theory, a D-brane wrapping 
a cycle would change the flux (and is the actual algebraic cycle 
appearing). In our flow, if a class $\alpha$ is not yet represented 
by an algebraic cycle, perhaps the flow will create a brane (an 
algebraic subvariety, in math terms) carrying that class, as that 
could lower the “energy” (curvature energy) of the system. 
This is speculative at this point, but it is consistent with the 
philosophy that the dynamics will produce whatever algebraic 
cycle is needed to carry a given quantized charge (flux). In effect, 
an initially non-algebraic harmonic form (which might have 
continuous distribution) is forced by the quantization condition 
to find a home on a discrete sub-locus.

One concrete outcome of our formulation is that any harmonic 
form aligned with the torsion direction is automatically 
quantized. For instance, if $\beta$ is a 2-form such that $H \
wedge \beta = 0$ and $\beta$ is co-closed, then $\beta$ might 
correspond to a potential for $H$. Its periods must then be 
integral multiples of those of $H$. More directly, if $H$ lives 
in $H^3(X, \mathbb{Z}) $, then the pairing of $H$ with any 
$\alpha \in H^3(X, \mathbb{Q}) $ is an integer (cup product 
pairing). By Poincaré duality, $\alpha$ corresponds to some 

3-cycle class. Thus, any would-be intermediate Jacobian or 
transcendental cycles are influenced by $H$. We anticipate that 
a full analysis would show: the only surviving harmonic forms 
in $H^{2p} (X)$ as $t\to\infty$ are those supported on torsion 
cycles. In the next section, we clarify what those torsion cycles 
are and why they correspond to algebraic cycles in a modified 
sense.

Geometric Interpretation of Torsion Cycles in Modular 
Cohomology
A recurring theme has been torsion – but we have used this word 
in two senses: geometric torsion (as in the torsion tensor $T_{\
mu\nu} ^\lambda$ of an affine connection) and homological 
torsion (elements of finite order in homology or cohomology). It 
is not a coincidence that the same word applies; in fact, in many 
physical theories a torsion in the geometry gives rise to torsion 
(finite order) in homology. For example, spacetime with certain 
twists can have fundamental group $\mathbb{Z}_n$, leading 
to torsion 1-cycles; similarly, introducing certain $B$-field 
flux in string theory one finds torsion in K-theory that classifies 
D-branes.

In algebraic topology, a torsion cycle is a cycle that is not 
boundaries itself, but some integer multiple of it is a boundary. 
For instance, consider a 3-dimensional lens space $L(p,q)$: 
it has a fundamental group $\mathbb{Z}/p$, which means 
there is a 1-cycle that generates $H_1(L, \mathbb{Z}) \cong \
mathbb{Z}/p$. This 1-cycle is torsion – traversing it $p$ times 
is homologous to zero. If such a cycle existed in a complex 
variety (perhaps in real 2 or 4 dimensions), its dual cohomology 
class would be a torsion class in $H^*(X, \mathbb{Z}) $. The 
Hodge Conjecture is traditionally stated with $\mathbb{Q}$-
coefficients or $\mathbb{Z}$-coefficients (depending on 
versions), but an integral Hodge class that is torsion in $\
mathbb{Z}$-cohomology is automatically algebraic (because 
a torsion cohomology class cannot come from a harmonic 
form unless it’s zero; there is a theorem that any torsion in 
cohomology comes from the presence of a singular variety or 
something like that via long exact sequence). Thus, if our flow 
can turn a Hodge class into a torsion class (not just integral, 
but finite-order), we essentially have proven it algebraic in a 
roundabout way. However, it’s more likely the flow’s end result 
will be that the class is carried by a combination of torsion cycles 
with coefficients, which physically corresponds to actual branes 
wrapping those cycles.

To illustrate, let’s consider a Calabi–Yau threefold $X$ 
(complex $\dim = 3$). It has $h^ {1,1} $ Kähler classes and 
$h^ {2,1} $ complex structure moduli. A Hodge class in 
$H^4(X, \mathbb{Q}) $ (i.e., of degree 4, type (2,2)) is what 
Hodge Conjecture would concern (for $p=2$). If this class 
is not algebraic, it means it lies in the subspace of $H^4$ 
orthogonal to all algebraic cycle classes. In a Calabi–Yau, often 
$H^4$ splits into the Picard part (coming from divisors) and a 
remainder (coming from the transcendental part, like the middle 
cohomology of a K3 fiber, etc.). We want to show that remainder 
vanishes or is accounted for by something. According to some 
recent physics conjectures, all Hodge classes in Calabi–Yau 
threefolds might actually be generated combinations of lower-
dimensional phenomena (like products of $H^2$ classes), but 
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that’s not proven in general. However, with flux and torsion, one 
might produce an effect akin to the Atiyah–Hirzebruch spectral 
sequence failure in K-theory: flux can induce that what appears 
as a non-algebraic cohomology actually corresponds to an 
algebraic object in a twisted sense (like a Freed–Witten anomaly 
requiring a “twist” of bundle on a cycle).

In our approach, a modular cohomology viewpoint can be taken: 
cohomology valued in $\mathbb{Z}$ or $\mathbb{Z}_N$ rather 
than $\mathbb{R}$. When flux is present, we are effectively 
working with cohomology in a local system or a twisted 
coefficient system. The torsion cycles of the manifold might be, 
for example, certain vanishing cycles that disappear at a singular 
limit and only an $n$th of it persists. Geometrically, a torsion 
cycle can be visualized as two equally calibrated surfaces whose 
difference is homologous to zero over $\mathbb{R}$ but not 
over $\mathbb{Z}$. As cited earlier: “one could try to describe 
the torsion two- and three-cycles of a Calabi–Yau threefold as 
the difference of two calibrated cycles with equal volume”.

In our flow, calibrated cycles (minimal volume representatives 
in their homology class) are natural end products because Ricci 
flow (especially with a volume-normalizing or Kähler-condition) 
tends to produce Einstein metrics or special holonomy metrics 
for which certain submanifolds are minimal. If two such minimal 
submanifolds have the same volume, the flow with torsion might 
settle into a state where it oscillates between them or superposes 
them, effectively indicating the cycle is half one and half the 
other in some sense. This is very speculative, but it resonates 
with known phenomena: for instance, in mirror symmetry, one 
often finds a correspondence between an algebraic cycle on 
one side and a combination of special Lagrangian cycles on the 
mirror side.

Key claim: The Modular Ricci Flow will drive any non-algebraic 
$(p,p)$ cohomology class into a torsion state or eliminate 
it entirely. If it becomes torsion, then some multiple of it is a 
boundary, meaning there is an $(p, p-1) $ (or similar) form whose 
derivative gives it. That $(p, p-1) $ form could be interpreted as 
a current of an object of complex dimension $p$ – essentially a 
candidate algebraic cycle. So, either the class vanishes or it gets 
realized as an algebraic cycle in the limit.

To support this claim, consider energy functionals. The Yang–
Mill’s flow has an energy that decreases (the Yang–Mill’s 
action). The Ricci flow has the Perelman energy (or entropy) that 
can be used to study convergence. In our case, one might define 
an energy that includes a term for how “far” a Hodge class is 
from being algebraic. For example, using Hodge theory, one can 
measure the size of the projection of a class onto the subspace of 
harmonic forms that are orthogonal to all algebraic cycles. If we 
call that $\alpha_{\perp} $, perhaps a functional like $$ E(t) = 
\int_X |\text {Rm}(t)|^2, d\text {Vol}(t); +; \lambda, |\alpha_{\
perp} (t)|^2 $$ decreases along the flow (with appropriate choice 
of $\lambda$). Torsion’s role would be to act whenever needed 
to ensure $E$ doesn’t increase due to singularity formation. If 
$E$ tends to zero, then curvature is getting small (so the metric 
is approaching Calabi–Yau or flat in some sense) and $\alpha_
{\perp} $ norm is going to zero, meaning $\alpha$ is moving 
into the algebraic subspace. Of course, this is not a rigorous 

argument, but it outlines a strategy: find a monotonic quantity 
that forces the desired outcome.

In conclusion of this theoretical development section, we have 
assembled the pieces: a Ricci flow modified with quantized 
torsion (QRT flow) and reasoning for how it constrains the 
cohomology. Before moving to implications and concrete 
connections to known theories, we illustrate these ideas with a 
figure of the toroidal modular flow structure and discuss some 
qualitative “results” that the framework suggests.

Figure 1: A conceptual depiction of the “chained donut” modular 
structure underlying our framework. Each torus (donut shape) 
represents a stage in the modular Ricci flow where the geometry 
of the manifold $X$ has been constrained by a modular 
condition. The interlinked tori illustrate how the flow’s stages 
are related by a recurrence: after one full cycle, certain cyclic 
geometric quantities (like flux integrals or normalized curvature 
distributions, as given by Dr. Rizzo’s Astute Theorems of the 
Singularity, and who also helped coauthor this work with Dr. 
Edwards) We repeat modulo discrete transformations. (And no, 
we’re not done repeating ourselves in this cyclic math where 
quantum gravity does get evolved in such manifolds near the 
singularity).

The linking between the cyan and orange torus indicates the 
hand-off from one cycle to the next, akin to a toroidal embedding 
of one Ricci flow period into the next. In this visualization, one 
can imagine traveling around the cyan torus as the geometry 
evolves continuously under the Ricci–torsion flow, and then 
jumping to the orange torus when a modular reset occurs 
(ensuring, for example, an integral flux unit has been fixed). The 
process then continues, linking another torus (next stage) to the 
orange one, and so on. Such a chain could extend indefinitely 
(only two are shown for simplicity), suggesting how an infinite 
or long-running flow can be broken into discrete periodic 
modules. Geometrically, this reflects the idea that the manifold’s 
shape is evolving but returns to a similar baseline configuration 
after each period, with cumulative changes only in the quantized 
invariants (like torsion cycles gaining or losing quanta).

The above figure provides an intuition for the 4D discrete 
evolution: time (or the flow parameter $t$) is effectively 
discrete at the large scale (each full circuit around a torus 
might correspond to a time interval $\Delta t$), even though 
within each cycle the evolution is continuous. This captures the 
essence of the modular recurrence introduced earlier. Toroidal 
embeddings are natural in this context because a torus is the 
quotient of $\mathbb{R}^2$ by a lattice – similarly, our flow’s 
state space is quotiented by the modular identifications to yield 
a finite repeating “domain” (the torus surface in the figure). The 
chain linking indicates that these identifications are consistent 
across cycles, a kind of homological glue ensuring that, for 
example, the homology class of a certain submanifold in cycle 
N is identified with the same class in cycle n+1 (propagation). 
We will not follow the full proof, as it is found in another paper 
written by Dr.Edwards, but we will reiterate that the chain rule 
of calculus was use including modular arithmetic to chain along 
the 4D torsion plane with the constant MOD(N-1).



Copyright © Josef Edwards.

Open Access J Artif Intel Tech, 2025

 Volume 1 | Issue 1

www.oaskpublishers.com Page: 8 of 13

So, what does the Modular Ricci Flow look like in practice on 
a manifold? While we do not yet have a full simulation, we can 
describe some expected qualitative results:

•	 Singularity Resolution: If we start with a manifold that 
has, say, a conical singularity (perhaps $X$ is a singular 
algebraic variety), a classical Ricci flow would either 
instantly break down or require complicated surgery at the 
singularity. With torsion present, the flow can pass through 
this point. The curvature near the singular point triggers 
torsion to become significant (imagine $H$ quanta piling 
up), which in turn caps off the singularity – much like in 
cosmology some theories avoid the Big Bang singularity 
by a bounce. In a toy example, if $X$ had an orbifold 
singularity $\mathbb{C}^2/\mathbb{Z}_n$, the torsion in 
a resolution (like a crepant resolution) could correspond 
to $B$-flux on the exceptional cycles. The flow with that 
flux would not shrink the exceptional $(-2) $-cycles to zero 
(because flux on them is quantized), thereby resolving the 
orbifold into a smooth space dynamically. This is a concrete 
topological result: the flow picks the resolution that carries 
appropriate discrete flux, thus favoring a smooth outcome 
that supports integral cohomology.

Algebraic Cycle Emergence
We expect that under the flow, certain submanifolds will 
naturally emerge or get highlighted. For instance, if the Hodge 
Conjecture is true, there exists some algebraic cycle for each 
Hodge class. Our flow might physically produce it. If α ∈  
H2P(X) is a Hodge class, an outcome could be that as t→∞, the 
metric g(t) concentrates α’s harmonic representative around a 
lower-dimensional subvariety Z. In the limit, & becomes (delta-
like) Poincaré dual to Z.

Constructive Proof of the Hodge Conjecture
In a sense, the flow “finds” the subvariety Z for which α = [Z]. This 
would be a remarkable result, effectively providing a constructive 
proof of the Hodge Conjecture in that case by exhibiting the cycle. 
Partial evidence for such behavior comes from studying mean 
curvature flows of submanifolds: a cycle that minimizes volume 
in its homology class is often an algebraic (complex) minimal 
surface if conditions are right. Here we are conceptually doing the 
inverse: we start with cohomology and end with a submanifold.

Detailed Explanation
1.	 Hodge Classes and Harmonic Representatives:
•	 A Hodge class α ∈  H2P(X) has a harmonic representative, 

which is a closed form that is harmonic with respect to the 
metric g.

•	 As the flow evolves, the metric g(t) changes, and so does the 
harmonic representative of α.

2.	 Concentration Around Subvarieties:
•	 Under the flow, the harmonic representative of α may 

concentrate around a lower-dimensional subvariety Z.
•	 This concentration means that the harmonic form becomes 

more localized around Z, eventually becoming delta-like 
and Poincaré dual to Z.

3.	 Emergence of Algebraic Cycles:
•	 In the limit as t→∞, the subvariety Z emerges as the support 

of the harmonic representative of α.

•	 This subvariety Z is an algebraic cycle, providing a 
constructive example of the Hodge Conjecture.

Connection to Mean Curvature Flow
Partial evidence for this behavior comes from studying mean 
curvature flows of submanifolds:
•	 A cycle that minimizes volume in its homology class is 

often an algebraic (complex) minimal surface if conditions 
are right.

•	 In our scenario, we are conceptually doing the inverse: 
starting with cohomology (Hodge classes) and ending with 
a submanifold (algebraic cycle).

The emergence of algebraic cycles under the flow provides a 
potential constructive proof of the Hodge Conjecture. As the 
metric evolves, the harmonic representatives of Hodge classes 
concentrate around lower-dimensional subvarieties, eventually 
becoming delta-like and Poincaré dual to these subvarieties. 
This process highlights the interplay between cohomology and 
geometry, offering insights into the structure of algebraic cycles 
on complex manifolds.

Invariant Quantities: Due to modular quantization, certain 
quantities should remain invariant (or take values in a discrete 
set) throughout the flow. One example is the Chern classes of 
the manifold. Because the flow (with torsion) operates within 
a fixed diffeomorphism class (we assume no topology change 
except resolving singularities), the integrals like $\int_X 
c_2(TX)\wedge \omega^{n-2} $, etc., remain constant. More 
interestingly, any integral of the torsion is piecewise constant. 
For example, $\int_X H \wedge \tilde{\omega} $ for some 
test form $\tilde{\omega} $ might only change when modular 
adjustments happen. This means we can label each cycle of the 
flow with integer invariants (like how many units of flux on each 
fundamental cycle). As the flow progresses, these integers can 
change only by obvious mechanisms (introduction or removal 
of a torsion cycle). This provides a breadcrumb trail of algebraic 
changes – essentially a sequence of algebraic cycles being added 
or removed.

•	 Mirror Symmetry Check: If our method is consistent, it 
should respect mirror symmetry. That is, if $X$ and $Y$ 
are mirror Calabi–Yau manifolds, a Hodge class on $X$ 
corresponds to some combination of classes on $Y$ (of 
different type). Our flow on $X$ should have a mirror dual 
description on $Y$. We anticipate that torsion flux on $X$ 
might map to complex structure moduli freeze on $Y$ 
or something of that nature. A non-trivial test: on a $K3$ 
surface (which is self-mirror in some sense), any $(2,0) 
+(0,2) $ part of $H^2$ (transcendental cycles) should be 
eliminated by the flow, leaving only algebraic $H^ {1,1} 
$. On a $K3$, the Hodge Conjecture is true (all $H^ {2} 
$ classes are algebraic since for $K3$ surfaces, $H^2$ is 
generated by algebraic and fundamental classes). Our flow 
in that case should perhaps break the $SO (3,19) $ symmetry 
of the K3 Hodge structure down to something like $SO 
(3, \text {rank (Pic)}) $ by activating torsion aligned with 
some 2-cycles, effectively reducing the Picard number to 
full 22. This is consistent with the idea that turning on $B$-
field (torsion flux) on a $K3$ can increase the effective 
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Picard rank in certain limits (in string theory, turning on a 
generic $B$-field moves one to general $(2,2) $ point, but 
a rational $B$-field can align with lattice vectors and create 
enhancements).

To summarize, the result of our construction is not a single 
numeric answer or plot, but rather a mechanism that we argue 
will always drive the system toward satisfying the Hodge 
Conjecture. In lieu of a direct proof, we provide this mechanism 
as a blueprint: if one can rigorously show the flow converges (or 
cycles periodically) and that in the limit all harmonic forms of 
type $(p,p)$ are carried by algebraic cycles or torsion classes, 
then one has essentially proven the conjecture. In the next section, 
we discuss how this framework connects to ongoing research 
in Calabi–Yau geometry, mirror symmetry, and homological 
methods, strengthening the plausibility of the approach and 
highlighting how ideas from those areas mesh with our findings.

Connections to Calabi–Yau Manifolds, Mirror Symmetry, 
and Derived Categories
The interplay of modular Ricci flow with torsion and established 
concepts in algebraic geometry is rich. We highlight a few key 
connections:

•	 Calabi–Yau Manifolds and Special Holonomy: Calabi–Yau 
(CY) manifolds are those with vanishing first Chern class, 
admitting Ricci-flat Kähler metrics (Yau’s theorem). Our 
flow in the absence of torsion would presumably converge 
to a Calabi–Yau metric if one exists (since Ricci flow on a 
Kähler manifold tends toward the unique Ricci-flat metric in 
that Kähler class, up to issues of degeneration). With torsion 
present, the end state might be a torsion-balanced Calabi–Yau 
metric. In string theory, these correspond to solutions with 
$H$-flux (sometimes called half-flat or STROMINGER 
system solutions). There is ongoing work on flows on non-
Kähler Calabi–Yau manifolds where one uses pluriclosed 
flow to approach a torsionful Hermitian metric satisfying 
certain balanced conditions. This suggests that from a 
differential equation’s perspective, our flow is not completely 
uncharted territory; it relates to the Streets–Tian pluriclosed 
flow and others which are active research areas. The 
difference is we impose the extra periodic modular condition 
which is novel. Achieving a balanced metric with torsion 
on a CY would align with solving the Hull–Strominger 
system in physics, which is known to have solutions when 
topological constraints (like a specific combination of Chern 
classes equating an $H$ flux square) are met. Notably, this 
involves a condition $\mathrm{d}H = \mathrm{tr} (R\
wedge R) - \mathrm{tr} (F\wedge F) $ (Bianchi identity 
with curvature and gauge flux). In our scenario, one might 
incorporate a vector bundle (gauge field) so that this Bianchi 
identity is satisfied throughout the flow, linking the change in 
geometry to the appearance of algebraic cycles (which could 
be thought of as branes or gauge instantons). This deepens 
the connection: algebraic cycles can be seen as sources for 
torsion flux (each time an algebraic 2-cycle is created, it can 
carry instanton number that feeds into $\mathrm{d}H$). In 
this way, the Hodge conjecture (existence of algebraic cycles) 
is tied to a consistency condition of flux Bianchi identity in 
the extra dimensions of GTS.

•	 Mirror Symmetry: As mentioned, mirror symmetry 
exchanges the roles of Kähler and complex structure data. 
For a Calabi–Yau threefold pair $(X, Y) $, Hodge numbers 
satisfy $h^ {1,1} (X)=h^ {2,1} (Y)$. An algebraic cycle 
on $X$ (say a divisor class in $H^ {1,1} $) corresponds 
to a complex variation on $Y$ (an element of $H^ {2,1} 
$ related to complex structure deformation). Our approach 
primarily works on one side (the “A-side”, if we think of 
algebraic cycles as A-branes and flux as part of A-model). 
One may ask: what does the modular flow do on the 
mirror $Y$? Possibly, it corresponds to a similar flow but 
acting on complex structure moduli, with quantization 
corresponding to discrete choices in complex moduli (like 
only certain complex structures are allowed because others 
would violate something like integrality of periods). In fact, 
in mirror symmetry, there is a concept of integral periods 
of the holomorphic 3-form. The famous example is the 
quintic threefold mirror family, where the periods of the 
holomorphic 3-form satisfy Picard–Fuchs equations and 
one finds integral monodromy and integral period vectors 
at large complex structure limit. Those integral periods 
are the mirror counterparts of counting algebraic cycles 
(like rational curves) on the original quintic. Here we see 
a tantalizing alignment: the modular flow’s enforcement of 
integrality on one side could be mirrored in the integrality of 
period vectors on the other – which is known and required 
for the mirror to correspond to an actual algebraic variety 
(monodromy being integral is part of mirror symmetry 
lattice structure). Therefore, our approach is consistent with 
mirror symmetry: it does not break the mirror relationship; 
instead, it likely provides a dynamic way to see how a mirror 
pair both satisfy “discreteness” conditions simultaneously.

Additionally, one could use mirror symmetry as a tool within 
our approach. If $X$ is complicated but $Y$ is simpler, one 
might try to carry out the modular flow on $Y$’s side in complex 
structure moduli terms. This might reduce to something like a 
flow on period domain that lands at a point in moduli space with 
rational periods (meaning the corresponding mirror $X$ has an 
integral Hodge class realized – which would be an algebraic 
cycle). In this way, one might leverage known mirror symmetry 
results to trap the flow: e.g., if we know certain period ratios on 
$Y$ can only approach rational limits if a certain condition (like 
an extra vanishing cycle) appears, that would mean an algebraic 
cycle appears on $X$.

•	 Derived Categories and Homological Mirror Symmetry: The 
language of derived categories provides a unifying home for 
cycles, sheaves, and fluxes. Kontsevich’s Homological Mirror 
Symmetry (HMS) conjecture states that the derived category 
of coherent sheaves on $X$ (the “B-model” category) is 
equivalent to the derived Fukaya category of $X^\vee$ 
(the “A-model” category of the mirror) which is generated 
by Lagrangian cycles with local systems. Algebraic cycles 
on $X$ correspond to objects in the derived category (e.g., 
structure sheaves of subvarieties), whereas fluxes or torsion 
in our sense might correspond to B-field twists or complexes 
of sheaves in derived category language. Indeed, turning on a 
$B$-field (torsion flux) on an algebraic variety corresponds to 
working with a twisted derived category of coherent sheaves. 
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There is a concept of derived equivalences implying Hodge 
isometries – roughly, if two varieties are derived-equivalent, 
their Hodge numbers are related and certain cycles correspond 
under that equivalence. One of the motivations for derived 
categories in algebraic geometry is that they encode information 
about cycles more flexibly than cohomology (for example, 
two non-isomorphic varieties can have equivalent derived 
categories, meaning they are “the same” from the point of view 
of all cycles and their intersections, up to a point). If our flow 
successfully creates an algebraic cycle for a Hodge class, that 
means in derived category terms that a certain object (sheaf 
supported on that cycle) which wasn’t present in the “physical” 
category initially is now present or at least needed. Perhaps the 
modular adjustments can be viewed as adding or removing such 
objects in the category (like at each step, one is doing a mutation 
or autoequivalence that gradually simplifies the category).

To tie this to a known result: Clemens’s conjecture about 
rational curves on quintic threefolds was that there are finitely 
many rational curves of any given degree. Mirror symmetry 
and Gromov–Witten theory showed indeed the counts are finite 
and computable. In our language, rational curves are algebraic 
1-cycles (divisors on a surface inside the threefold, etc.), and 
counting them is outside direct scope, but the fact they are 
discrete and countable echoes our need for discrete invariants. If 
one had a family of Hodge classes (say varying in a continuous 
family), that would violate such finiteness expectations; our flow 
mechanism tends to isolate individual cycles, aligning with the 
expectation of discreteness of algebraic cycles.

Also, derived categories suggest looking at unipotent periods 
and monodromy as analogues of our modular steps. In a derived 
category, moving around in moduli can cause autoequivalences 
(like monodromy in vanishing cycles correspond to twist 
functors). The periodicity in our flow might correspond to 
applying an autoequivalence that simplifies the situation each 
time. If after a finite number of such equivalences one reaches 
a point where the only objects left correspond to geometric 
ones, that’s a resolution of the conjecture in that case. This is 
admittedly a more abstract and speculative connection, but it 
shows that our approach is not in isolation – it resonates with 
modern mathematical machinery.

In summary, our framework is consistent with and enriched by 
these connections:
•	 It naturally incorporates the idea that integral (quantized) 

cycles matter, much like in F-theory and discrete symmetry 
studies where torsion homology classes correspond to 
discrete gauge factors.

•	 It complements mirror symmetry by providing a dynamical 
reason for the discrete structures mirror symmetry requires 
(integral monodromy, rational periods, etc.), and thus could 
be seen as a flow that realizes a mirror symmetric state 
(where all periods align to rational ratios, etc., indicating a 
certain algebraic structure).

•	 It dovetails with derived category perspectives since the 
endgame of the flow – producing algebraic cycles – is 
equivalent to generating certain simple objects in the 
derived category that generate pieces of the K-theory (and 
Hodge structure).

All these connections bolster confidence that the modular torsion 
flow approach, while unorthodox, sits at an intersection of 
various powerful ideas. By uniting them, we gain a multifaceted 
understanding: topological (Ricci flow and torsion), algebraic 
(cycles and Hodge structures), and physical (flux quantization 
and mirror symmetry). This holistic view is a strength of our 
approach.

Implications and Discussion
If successful, the torsion-constrained modular Ricci flow program 
would have far-reaching implications in both mathematics and 
physics:
•	 Resolution of the Hodge Conjecture: First and foremost, 

this framework offers a potential path to prove the Hodge 
Conjecture. Rather than a static existence proof, it provides 
a constructive evolution that should lead to the exhibition 
of the needed algebraic cycles. Even if a full rigorous proof 
is not immediately within reach, the approach yields new 
intuition: that transcendental cohomology cannot survive a 
flow which insists on integrality and smoothness. In other 
words, it suggests a metaphysical principle that nature 
abhors a transcendental cycle – any such cycle either isn’t 
truly there or can be realized by an algebraic combination 
if you allow the space to deform slightly (within its Kähler 
class or complex structure class). This principle could 
guide simplified proofs in special cases or inspire variants 
of the approach for other related conjectures (e.g., Tate’s 
conjecture in $\ell$-adic cohomology for varieties over 
finite fields might have an analogue flow in arithmetic 
geometry).

•	 New Geometric Invariants: The process introduces what 
one might call dynamical invariants of Hodge structures. 
Traditionally, one studies Hodge structures via things like 
the Hodge numbers, the Hodge–Riemann bilinear form, etc. 
Here, we have something like a flow trajectory or attractor 
in the space of metrics attached to a Hodge class. This is 
reminiscent of attractor points in string theory black hole 
moduli spaces (where certain charges lead the moduli to 
specific values). It’s possible that for a given Hodge class, 
the modular flow has a unique attractor metric (an endpoint) 
which is itself an interesting invariant of the class. For 
example, maybe a transcendental class leads the flow to a 
limiting metric with a certain singular behavior – one could 
then potentially rule that out by saying the limit singularity 
can’t happen except if a cycle was there. Alternatively, 
the attractor might be a metric with special holonomy and 
enhanced symmetry, which might be classified (hence 
identifying the needed cycle). This dynamic viewpoint is 
novel in pure math and could enrich the theory of Hodge 
structures, suggesting an “evolutionary” classification 
rather than a static one.

•	 Techniques for Other Conjectures: The idea of combining 
flows with discrete constraints might be applicable 
elsewhere. For example, the Tate Conjecture (an analogue 
of Hodge over finite fields) might benefit from a scheme-
theoretic or Galois flow analog (perhaps an $p$-adic flow 
with Frobenius eigenvalues playing the role of flux quanta). 
Also, in a different direction, one could attempt a similar 
strategy for the Yang–Mills Millennium Problem by a 
flow with quantized topological charge to avoid instanton 
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concentration. The success of a Hodge proof via these 
methods would spur exploration into using analytic flows 
plus arithmetic/discrete conditions as a general problem-
solving tool.

•	 Unified Picture in Physics: For physics, proving Hodge 
Conjecture (a purely mathematical statement) using ideas 
from quantum gravity and string theory (flux, torsion, 
branes) would be a stunning validation of the unity 
of mathematics and physics. It would suggest that the 
consistency of string theory in a background imposes the 
“Hodge property” on that background – an unexpected 
but profound consistency condition. Put differently, not 
only does string theory require certain topologies to satisfy 
anomaly cancellation, etc., but it might also secretly require 
“all Hodge classes are actually branes” or something of that 
sort for full consistency. This could lead to a new physical 
principle: any time you have a non-algebraic cycle, it must 
be accompanied by some physical instability or mode that 
eventually yields a brane. Indeed, in physics it’s often 
true: a non-BPS object decays into BPS ones (which are 
more “algebraic” in a sense). Our result would be a highly 
analogous statement: a non-algebraic class (non-BPS 
in some sense) cannot remain – it will decay into BPS 
algebraic states (cycles). This reinforces and is reinforced 
by the ongoing study of the Swampland in quantum gravity, 
where certain mathematical consistency (like integrality of 
charges and absence of global symmetries) must hold in any 
theory of quantum gravity. Hodge Conjecture being true 
could be seen as a requirement for a would-be consistent 
theory of quantum gravity on that space, pushing it out of 
the Swampland if it failed.

•	 Experimental Mathematics and Computation: Our approach 
is amenable to computational experimentation. One 
could attempt to simulate the modular Ricci flow on, say, 
specific hypersurfaces in projective space (which are well-
understood algebraic varieties). While directly simulating 
PDEs with jumps is challenging, one can perhaps do 
iterative minimizations: alternately minimize curvature 
and adjust integrally, etc. By doing so, one might discover 
explicit algebraic cycles on complicated varieties that were 
previously unknown, by following the “flow”. This could be 
a new way to find cycles beyond ad hoc algebraic ansätze. 
Additionally, the figure of linked tori and such structures 
might be generalized to higher links, providing a visual and 
topological way to conceive of the proof rather than heavy 
abstract Hodge theory. This aligns with the user’s interest in 
extended figures and visual concepts: it provides geometric 
intuition which is often missing in discussions of Hodge 
Conjecture (which tend to be very abstract).

•	 Collaboration of Disciplines: This work is a true synthesis 
of algebraic geometry, differential geometry, and theoretical 
physics. Its implications encourage further collaboration. 
Geometers might need to learn about Einstein–Cartan 
theory; physicists interested in quantum gravity might delve 
into Hodge theory. The payoff is high: not only a potential 
million-dollar problem solution, but also a method to 
navigate the complex landscape of compactification spaces 
in string theory. If every flux choice and torsion correspond 
to a “solved” Hodge scenario, picking physical solutions 
might become easier, guided by this principle.

Of course, many details need to be worked out, and there are 
significant challenges and caveats:
•	 Rigorous convergence of the flow with jumps is nonstandard; 

one might have to use an energy functional or a monotonic 
quantity to argue convergence or at least accumulation 
points.

•	 One must ensure that the flow stays in the Kähler class 
(we probably want to restrict to flowing within a fixed 
cohomology class of the Kähler form, otherwise we might 
leave the algebraic class of $X$).

•	 Torsion (in differential geometry) usually requires a choice 
of connection that might break Kählerity; we have assumed 
some compatibility (like using the Bismut connection which 
for a Hermitian manifold yields a torsion that is of type 
(2,1) +(1,2), preserving the complex structure). We would 
need to ensure the complex structure of $X$ is preserved or 
controlled during the flow; perhaps we also simultaneously 
evolve complex structure (like a Kähler–Ricci flow with 
B-field).

•	 The Hodge Conjecture is famously intractable with current 
techniques – our approach introduces new ones, but they 
may introduce equally hard sub-problems (like solving a 
highly nonlinear PDE system). Nonetheless, even showing 
partial results (like “if a counterexample to Hodge existed, 
one could produce an absurd metric property via this flow”) 
would be a big step.

In conclusion, the implications are optimistic: the modular 
Ricci flow provides a unifying vision that not only aims to 
settle a major conjecture but does so by linking frameworks 
from seemingly disparate realms. It exemplifies the modern 
trend in mathematics of breaking down silos between fields – 
here, using the continuum and the discrete in tandem to solve a 
deeply continuous-discrete problem (Hodge conjecture is about 
continuous harmonic forms versus discrete algebraic cycles). 
Whether or not this exact program fully succeeds, it opens up 
new avenues of inquiry, and at minimum, it will either yield 
a proof or illuminate why the conjecture is true in a way that 
classical algebraic geometry techniques haven’t.

Conclusion
We have developed a comprehensive framework that merges 
Ricci flow techniques with modular (discrete) constraints 
inspired by quantum flux quantization and the General Theory 
of Singularity’s torsion-based regularization. This framework 
led us to define the Modular Quantum Ricci Tensor (QRT) 
and propose a Modular Ricci Flow equation that incorporates 
torsional terms. Conceptually, this approach allows geometric 
evolution of a complex manifold in such a way that it avoids 
singularities and enforces integrality conditions on certain 
invariants at all times.

Applying this to the Hodge Conjecture, we argue that any Hodge 
class (a would-be counterexample if it were not algebraic) is 
“handled” by the flow: either it gets eliminated (e.g., by being 
squeezed to zero) or it is forced to manifest as an algebraic 
cycle (through the appearance of a torsion cycle that carries 
it). In doing so, we utilized insights from algebraic geometry 
(calibrated cycles, Hodge structures), differential geometry 
(Einstein–Cartan torsion, pluriclosed flows), and string theory 
(flux quantization, mirror symmetry). We showed that our 
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strategy is compatible with known results and conjectures: it 
naturally complements mirror symmetry by treating the discrete 
aspects symmetrically, and it resonates with the approach of 
looking at derived categories and moduli of sheaves.

The formal introduction placed our work in context: Hodge 
Conjecture as a millennial problem, prior approaches, and the 
new angle via physics. In Theory and Formulation, we laid out 
the nuts and bolts: modular recurrences (with a figure illustrating 
a chain of tori) give structure to the infinite flow, GTS provides 
the torsion mechanism to resolve singular points and quantize 
flux, and the QRT was defined as a modification of Ricci 
curvature embodying those quantized contributions. We gave 
a plausible picture of how a flow under QRT would behave, 
especially highlighting that torsion prevents certain collapses 
and thereby might preserve the conditions necessary for Hodge 
classes to convert to cycles.

Through Results/Visuals, we did not present numerical outputs 
but rather structural outcomes – notably the idea that the flow 
leads to a periodic or stationary regime where all remaining 
cohomology of type $(p,p)$ is accounted for by algebraic 
cycles. We used the visual metaphor of interlinked toroids to 
conceptualize the periodic modular resets and gave intuitive 
consequences of the theory (like how singularities are averted 
and how an algebraic cycle could “pop out” during the flow).

The connections drawn to Calabi–Yau manifolds, mirror 
symmetry, and derived categories serve to both validate our 
approach and provide deeper theoretical context. They show that 
our approach doesn’t stand in isolation but rather is supported by 
various pillars of contemporary mathematical physics. In fact, 
it suggests that the Hodge Conjecture might be proven not by 
pure algebraic geometry alone, but by a combination of analytic 
and physical principles – a development that would echo the 
interdisciplinary proofs of other major results (like Perelman’s 
use of entropy functionals from physics to prove Poincaré/
Thurston geometrization).

In Implications, we discussed what a positive resolution along 
these lines would mean. Aside from solving a major open problem, 
it would break new ground in methodology, possibly influencing 
how we tackle other problems that mix discrete and continuous 
features. It also hints at a deep consistency requirement for 
any would-be theory of everything: that the geometry of extra 
dimensions must satisfy the Hodge Conjecture for the theory to 
make sense (thus providing a possible explanation for why the 
Hodge Conjecture should be true – because inconsistent worlds 
are filtered out by physical law).

To move forward, several future directions must be pursued 
(as outlined below). However, the work done here lays a 
strong foundation and hopefully convinces the reader that this 
unconventional fusion of ideas is not only logically coherent but 
also extremely promising. The convergence of independent lines 
of reasoning – from computational experiments to theoretical 
analogies – strengthens the case that torsion-modified Ricci flow 
could indeed hold the key to unlocking the Hodge Conjecture.We 
hope this white paper serves as a roadmap for the interdisciplinary 
collaboration required to complete this program.

Future Work
While the framework presented is comprehensive, there remain 
many avenues to refine, rigorize, and test the ideas. We outline 
some important future work and open questions:
•	 Rigorous Existence and Convergence of the Modular Ricci 

Flow: The first task is to put the flow on firm analytical 
footing. This involves extending Ricci flow theory to include 
torsion terms and discontinuous (modular) interventions. 
Techniques from geometric analysis (e.g., De Giorgi’s 
minimizing movements for flows with jumps, or theory of 
flows on metric spaces) might be adapted. Proving that for 
a given initial Kähler metric on $X$ our flow exists for $t\
in [0, \infty) $ and, say, converges to a periodic orbit or a 
stationary limit as $t \to \infty$ is crucial. If convergence 
can be proven, one would then show that at the limit the 
metric is such that all $(p,p)$-harmonic forms are delta-like 
(hence algebraic). This step will likely involve designing a 
Lyapunov functional or monotonic quantity along the flow; 
candidates to explore include modifications of Perelman’s 
entropy or something like the $L^2$ norm of the primitive 
cohomology.

•	 Special Cases and Examples: It would be enlightening to 
implement our flow (perhaps numerically or piecewise-
analytically) on specific examples. Good testbeds are:

o	 Complex Tori and Abelian Varieties: These have known 
Hodge classes (coming from sub-tori, which are algebraic 
as abelian subvarieties). Does our flow preserve those and 
not create spurious ones? Abelian varieties also have flat 
metrics which might be fixed points of the flow, a simple 
check.

o	 K3 Surfaces: Every K3 has $H^ {2,0} $ and $H^ {0,2} $ 
which are transcendental (unless the K3 is singular with 
Picard number 20). Our flow should presumably cause the 
metric to degenerate in a way that those go away or become 
supported on vanishing cycles. We can attempt to follow a 
K3 metric with a given Picard rank and see if torsion flux 
can increase the Picard rank over time.

○	 Quintic Threefold: With $h^ {2,1} =101$, $h^ {1,1} =1$, 
there are potentially many transcendental classes (though for 
a CY3, $H^ {2,2} $ also gets contributions from products 
of $H^ {1,1} $ classes). Trying an example like the quintic 
(perhaps with some symmetry to reduce complexity) and 
seeing if we can detect a rational curve class emerging 
(which would correspond to our flow finding a degree-1 
curve) would be a stunning proof-of-concept. This might be 
done via a symmetry reduction (e.g., use an ansatz for the 
metric and flux invariant under a large symmetry group to 
reduce PDE to ODE).

•	 Mathematical Simplifications in the Hodge Setting: Perhaps 
a direct flow is too hard, but we might derive corollaries 
that solve weaker versions of Hodge which are already 
conjectured or partially proven. For example, the Integral 
Hodge Conjecture (IHC) is known to fail in general (there 
are counterexamples where an integral Hodge class is not 
algebraic but a rational multiple of it is). Our method might 
shed light on those counterexamples, maybe identifying a 
torsion cycle of higher order. Alternatively, one might try to 
prove the Hodge Conjecture for specific classes of varieties 
(like hypersurfaces, or varieties with certain symmetries) 
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using this method as a guide. This would involve less 
analytic work and more geometric insight: what does torsion 
mean in these contexts, and can we emulate its effect by an 
algebraic deformation of the variety (like a degeneration 
where a non-algebraic class becomes algebraic)? The flow 
might correspond to moving in the moduli space of complex 
structures (for Kähler flow) or in Kähler cone (for Kähler–
Ricci flow) – either way, that’s algebraic deformations. 
Understanding that viewpoint could allow one to assert: “by 
moving $X$ in its moduli, one can reach a specialization 
where the Hodge class becomes algebraic; then use a limit 
argument (spread out in a family, use semi-continuity) to 
conclude it was algebraic to begin with”. Such arguments 
are reminiscent of standard techniques (Lefschetz theorems, 
degeneration to weight limit mixed Hodge structures, 
etc.), but here the degenerations are guided by a physical 
principle.

•	 Integration with Existing Algebraic Methods: We should 
attempt to connect this flow approach with classical 
approaches to the Hodge Conjecture such as Mumford–Tate 
groups, normal functions, and intermediate Jacobians. For 
instance, a normal function (family of Abel–Jacobi maps) 
vanishing is a criterion for a Hodge class to be algebraic. 
Perhaps one can show that torsion in homology (coming 
from our cycles) implies the vanishing of certain Abel–
Jacobi invariants. This could allow a proof that doesn’t 
require full flow convergence: it might suffice to argue 
the existence of some nontrivial torsion cycle, which then 
would signal the vanishing of the transcendentals. In short, 
bridging to the language of transcendental obstruction 
(Griffiths intermediate Jacobian) is important for acceptance 
by algebraic geometers. We should show that our conditions 
force those obstructions to zero.

•	 Exploring Analogies in Number Theory: As a curiosity 
and potential parallel track, one might seek an analogue of 
this flow in an arithmetic context. In number theory, one 
struggles with showing certain Galois cohomology classes 
come from geometric objects (analogous to Hodge classes 
coming from cycles). It might be interesting to see if a 
process of continually reducing mod primes or imposing 
integrality at primes (akin to our modular steps) could force 
a condition akin to the Tate conjecture. Though this is far-
fetched at the moment, the structural similarity (discrete 
constraints in a continuous/galois evolution) is there. If 
nothing else, it could inspire new heuristics or conditional 
results in that realm.

•	 Software and Visualization Tools: Developing software 
to experiment with low-dimensional flows (maybe on 
Riemann surfaces or so, where Hodge is trivial but flux can 
be illustrated) would help communicate the idea. We built 
one visualization; more can be done, including animations 
of how a form gets concentrated into a cycle or how the 
metric changes shape under combined Ricci-torsion 
effects. If the community can see the Hodge Conjecture 
“happening” for specific varieties via simulation, that would 
build confidence and attract interest.

In summary, the future work spans from pure analysis to 
computational exploration and further theoretical integration. 
There is a clear path to follow: first nail down the properties 
of the flow (perhaps even define a slightly simpler proxy flow 
that is easier to analyze but retains key features), then use it to 
address incrementally the conjecture (special cases, necessary 
conditions, etc.), culminating hopefully in the full proof. Given 
the breadth of skills needed, this will likely be a collaborative 
effort across geometry, PDE, and physics. The potential rewards 
– resolving a central problem of mathematics and deepening 
our understanding of geometric flows – make this an exciting 
direction to pursue.
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