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ABSTRACT
Wind energy is one of the most widely used renewable energy sources in the world and has grown rapidly in recent years. However, wind 
turbines generate noise that is often perceived as a disturbance by nearby residents. So, developing tools to assist wind farm developers and 
regulatory authorities is essential. This study focusses on the impact of environmental data on wind turbine noise (WTN) level estimation 
using recurrent neural networks (RNNs). We compare the performance of an architecture which is based on long-short term memory cells 
(LSTM). LSTM model trained using only acoustic features in the frequency range of 31.5 Hz to 2 kHz with those incorporating additional 
environmental features, such as wind speed and wind turbine power accorded to each wind speed value. The results highlight the influence 
of these factors on noise characterization and demonstrate the extent to which environmental data enhances WTN level estimation.
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Introduction
The noise generated by wind turbines has raised concerns among 
residents living near wind farms, as it can negatively impact 
sleep quality and overall well-being [1]. With the increasing 
size of modern wind turbines, noise issues have become more 
significant, prompting several countries, including France, to 
implement strict regulatory standards to control wind turbine 
noise (WTN) emissions. These regulations define emergence as 
the difference between the total noise level during wind turbine 
operation and the background noise level when the turbines are 
inactive. Compliance requires that emergence does not exceed 5 
dB(A) during the day and 3 dB(A) at night if the total noise is 
exceeding 35 dB(A).

An on/off strategy for wind turbines is commonly used to verify 
a curtailment plan employed to reduce noise emissions. This 
plan is implemented to limit the noise impact of wind farms and 
ensure regulatory conformity. During the operational phase, it 
is verified through measurements taken during start/stop cycles 

of the wind farm. However, these measurements have several 
drawbacks. Their limited duration does not always reflect the 
variability of residual noise. They are also costly, as they require 
shutting down theturbines. Additionally, depending on the 
situation, they may lead to excessive or insufficient curtailment 
of the wind farm.

Several methods have been explored to address this issue. For 
instance, Gloaguen et al. [2] proposed a non-negative matrix 
factorization (NMF)-based approach to estimate WTN levels. 
Despite promising results in some cases, the uncertainty of 
the method prevents its deployment on an industrial scale. 
Consequently, we are moving towards the use of deep neural 
networks, given their success in the field of source separation 
[3], sound classification [4] and sound event detection [5]. Anicic 
et al. [6] applied Support Vector Regression (SVR) to predict 
WTN levels from acoustic and wind speed data, confirmed the 
importance of integrating environmental data, such as wind 
speed, to increase the accuracy of prediction models.
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The method presented in this paper uses Recurrent Neural 
Networks (RNNs) for WTN level estimation from total noise 
monitoring. RNNs proved their effectiveness in extracting 
features from acoustic scenes[7], and handling long-term 
dependencies in sound patterns. These models are well-suited 
for capturing the temporal dynamics and sequential nature of 
acoustic data, making them good candidates for extracting WTN 
level from total noise.

Section 2 provides a comprehensive overview of the 
methodology, beginning with the dataset construction process, 
from background noise measurements and WTN synthesis, 
and environmental data description. Section 3 then outlines the 
data preprocessing steps, provides an explanation of the LSTM 
cell, and introduces the proposed architecture along with the 
evaluation metrics and optimization algorithm. The experimental 
results are discussed in the final section, Section 4.

Dataset
To train the supervised LSTM model, it is crucial to have an 
appropriate training dataset. The dataset includes the time series 
of the total noise level, LT N as input, while the overall sound 
pressure level of wind turbine noise, LWT N, serves as the output 
(label). Both time series consist of one-second equivalent noise 
levels, measured in third-octave bands ranging from 31.5 Hz to 
2 kHz. The levels are expressed in A-weighted decibels (dB(A)).

Measuring LWT N during recordings presents a challenge due to the 
presence of background noise from various sources that cannot 
be isolated. To create realistic soundscapes, a hybrid approach 
combining measurement and sound synthesis is adopted. This 
method used a background noise measured at a development 
site during an initial state (2.1), ensuring consistency with wind 
measurements taken at a height of 81 meters. This background 
noise combines with a generated WTN based on wind speed 
measurements and machine specifications (see Subsection 2.2).

Background Noise Measurements
Background noise levels were measured in third-octave bands, 
sampled at a one-second resolution to provide a detailed 
representation of the sound environment, in line with the 
capabilities of sound level meters. These measurements are 
accompanied by wind speed data recorded over 10-minute 
intervals. Figure 1 presents a sample of the measured Background 
noise levels in dB(A).

Figure 1: The overall SPL of the measured background noise 
sample (LB N  )

Wind Turbine Noise Synthesizing
The estimation of sound power levels (LW ) for wind turbines 
relies on the Machine Specifications (MS) document, which 
provides octave-band values in dB(A) for various wind speeds, 
typically following the ISO 61400-11 standard procedure. As 
a choice for this study, a 2 MW industrial turbine with a 90 
m diameter is used, with LW values specified for wind speeds 
ranging from 3 to 25 m/s. To obtain time-varying LW values, 
the recorded 10-minute wind speed measurements are used to 
linearly interpolate the corresponding sound power levels from 
the MS. This process allows for obtaining LW ( F, T ) in octave 
bands (F ) for each 10-minute interval (T ). An up-sampling 
procedure is then applied to convert these results (LW (F, T )) 
into third-octave bands ( f ), yielding LW ( F, T ). This conversion 
simply serves to bring different data sources onto the same 
frequency basis. The next step involves adjusting the sampling 
frequency of the signal from 10-minute intervals to one second 
by applying zero-padding. This ensures compatibility with the 
desired sampling frequency using an up-sampling ratio of 1/600, 
ultimately obtaining LW ( F, T ) in third-octave bands per second 
(t ). Figure 2 illustrates the complete process for generating time 
series of acoustic power for the WTN component.

Figure 2: Flowchart illustrating the step-by-step process for 
obtaining time series of acoustic power levels. The process starts 
with machine specifications and wind speed measurements, 
followed by linear interpolation to estimate Lw (F, T ). A third-
octave conversion, and zero-padding is applied to resample the 
data to a third octave bands and one-second resolution, resulting 
in LW ( F, T)

The sound pressure level of the WTN (LWT N ) is computed for 
a simplified scenario in which a wind farm consists of a single 
wind turbine. This level is determined at the receiver point by 
applying an acoustic propagation filter. The filter is based on 
solving the parabolic equation, a physical propagation model 
that accounts for various parameters such as ground impedance, 
sound speed gradient, geometric divergence, atmospheric 
absorption, and an extended wind turbine source model [8]. 
These filters were previously used in a study by Gloaguen et 
al. [2]. Figure 3 illustrates attenuation filters for three different 
distances, based on a simplified assumption and moderately 
favorable propagation conditions. However, these propagation 
assumptions are highly simplified, as in reality, propagation 
filters continuously vary due to factors such as atmospheric 
turbulence.

Total Noise
The total noise SPL (LT N ) is obtained by summing the synthesized 
LWT N with the background noise LBN, as follows:

LT N = LWT N ⊕ LBN				                              (1)

Where ⊕ represents the energetic summation of decibels. 
Finally, a dataset is produced, consisting of time series of LT N 
and LWTN for each location at 3 distances from the turbine.
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Figure 3: Attenuation filters corresponding to distances of 500 
m, 1000 m, and 1500 m between the receiver (at a height of 1.5 
m) and the wind turbine under moderately favorable propagation 
conditions

Environmental Data
For simplification purposes, we have defined the electrical 
production data and wind speed as environmental variables. The 
wind speed is interpolated with a temporal resolution of one 
second and integrated as an input into the LSTM model. The 
wind turbine’s electrical production, which depends on wind 
speed, is used alongside acoustic data for model training. This 
integration accounts for the impact of wind speed on generated 
noise and considers the correlation between energy production 
and wind conditions. Figure 4 presents a sample of wind speed 
recorded per second, derived from measurements taken every 10 
minutes. It also displays the corresponding electrical production 
in kW over time, illustrating the correlation between wind speed 
variations and power generation.

Figure 4: Time series of wind speed (in m/s, red) and electrical 
production (in kW, green) over a period of approximately 1.5 
hours. The wind speed data is interpolated at a resolution of 
one second, while the electrical production corresponds to the 
turbine’s response to varying wind speed.

Methodology
Data preprocessing
The features used for training include total noise (31 Hz to 2 
kHz in dB(A)), electrical production, and wind speed, which 
have significantly different scales (0-25 m/s for wind speed 
and 0-2000 kW for production). Normalization is required 
to harmonize the amplitudes, prevent certain variables from 
dominating, and enhance the model’s convergence, and stability.

To ensure optimal convergence and prevent the disproportionate 
influence of features with large dynamic ranges, Z-score 
normalization [9] is applied. This technique scales all features to 
the same range, promoting balanced and efficient learning.

The input data, denoted as Xi,k , are standardized using Z-score 
normalization to produce ,
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Figure 5 illustrates the impact of Z-score normalization on the 
wind speed feature (m/s) for our LSTM model. The original wind 
speed distribution (left plot) shows characteristic right-skewness 
(mean = 4.89 m/s). Normalization successfully transforms the 
data to zero mean and unit variance (right plot).

The persistence of skewness post-normalization suggests 
the feature retains non-Gaussian characteristics, which is 
inconsequential for RNNs—as they do not assume input 
normality—but ensures stable gradient updates during training 
by mitigating scale disparities across features (wind speed, 
electrical production, acoustic data), without altering the 
physically meaningful distribution shape of wind speeds. Values 
extending beyond Z = +3σ (corresponding to wind speeds >~ 
10 m/s in the original scale) represent high-wind events. While 
these could be considered statistical outliers, that the LSTM’s 
activation functions and sequential processing can inherently 
handle such deviations. This preprocessing step is essential to 
harmonize feature scales without distorting temporal patterns.

Figure 5: Density distributions of original wind speed values (in 
m/s) and their z-score normalized (μ = 0, σ = 1) 

Neural Networks
Given the temporal nature of the dataset—comprising total 
noise, wind speed, and electrical produc- tion—where each row 
represents a specific time step t and the next row corresponds 
to the following time step t + 1, it is beneficial to use Recurrent 
Neural Networks (RNNs), such as LSTM [10].

LSTM Cell
A standard LSTM cell includes three gates: the forget gate ft 
which determines how much of the previous data to forget; the 
input gate it which evaluates the information to be written into 
the cell memory; and the output gate 0t which decides how to 
calculate the output from the current information, calculated 
from input data xt and previous hidden state ℎt−1 by a sigmoid 
function, see Figure 6.
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Here, the W, R, and b variables represent the matrices and vectors 
of trainable parameters. The LSTM unit is defined by

Figure 6: Illustration of a LSTM cell. The diagram represents 
the flow of information within the cell
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In words, the candidate cell state tC  is calculated using the input 
data xt and the previous hidden state ℎt−1. The cell memory or 
current cell state Ct is calculated using the forget gate ft, the 

previous cell state Ct−1, the input gate it and the candidate cell 
state tC . The Hadamard product  is simply the element-wise 
product of the involved matrices. The output yt is calculated by 
applying the corresponding weights (Wy and by) to the hidden 
state ℎt.

Proposed Architecture
In this study, we propose a regression architecture, illustrated in 
Figure 7, based on a stack of LSTM layers to predict the global 
sound pressure level (OASPL) of WTN from the total acoustic 
spectrogram. The input to the model is a time-frequency 
representation of the total noise, computed over third-octave 
bands from 31 Hz to 2 kHz. Each time step contains 19 spectral 
features, forming a sequence that encodes the acoustic context.

The model begins with two sequential unidirectional LSTM 
layers, each designed to learn temporal dependencies in the 
acoustic data. These layers extract relevant sequential features 
that capture the dynamics of the wind turbine’s acoustic behavior. 
Following the LSTM stack, a non-linear dense layer with ReLU 
activation is introduced to model complex relationships within 
the extracted temporal features.

To prevent overfitting and enhance generalization, a dropout 
layer with a rate of 20% is added. Finally, a custom non-linear 
output layer with a scaled tanh activation function is employed: 
f (x) = 60 · tanh(x). This function constrains the output within a 
plausible acoustic range, centered on 0. It enables predictions 
up to 60 dB(A), and allows negative values approaching - 60 
dB(A), representing situations with no WTN contribution, such 
as when the turbine is shut down.

Figure 7: RNN architecture used for the estimation of the OASPL of WTN from total noise spectrograms

Evaluation Metrics and Optimization
The Mean Absolute Error (MAE) is selected as the evaluation 
metric for assessing the performance of the RNN model during 
training. The MAE quantifies the average magnitude of the errors 
between the predicted particular noise level ˆ

iWTNL  and the actual 
value LWTN in dB(A), and is defined as follows:

1
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To improve robustness against outliers (highly variable noise 
conditions), the Huber loss function is adopted as the objective 
function for training, which combines Mean Squared Error 
(MSE) for small residuals and Mean Absolute Error (MAE) for 
larger residuals:

ˆ( , )
i iWTN WTNL L Lδ = 					                  (6)

where δ is a threshold controlling the transition between 
quadratic and linear behavior.

The derivative of the Huber loss with respect to the model 
predictions ˆ

iWTNL  is quadratic for small residuals and linear for 
larger ones. This ensures smooth and stable gradients in the 
presence of clean data, while limiting the influence of outliers 
through a reduced gradient response for large errors. Such 
behavior facilitates efficient and robust optimization using 
gradient-based algorithms. To minimize the loss function, we 
use the Adam optimizer, which updates the model parameters θ 
iteratively as follows:

θ = θ-η . ∆θ Lδ					                           (7)

Here, ∆θ Lδ denotes the gradient of the Huber loss with respect to 
the model parameters θ, and η is the learning rate.{
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Results and Discussion
This section presents the experimental results obtained on the test 
set using two distinct architectures. The first architecture relies 
solely on acoustic data (19 features), while the second includes 
two additional variables—wind speed and power generation—
bringing the total number of input features to 21.

The prediction performance of both input configurations is 
evaluated on the test set using the MAE, as presented in Table 1. The 
results highlight the impact of including environmental variables 
(wind speed and power generation) on the model’s accuracy.

Table 1: Comparison of prediction performance (MAE) 
and loss function (Huber) on the test set with and without 
environmental data.

Test Set 
Configuration Loss function dB(A) MAE dB(A)

Without 
environmental data

1.86 0.72

With environmental 
data

0.84 0.26

The results present a significant improvement in prediction 
accuracy when environmental variables, wind speed and power 
generation, are included in the model. Both MAE and loss 
function show substantial reductions, from an MAE of 0.72 
dB(A) to 0.26 dB(A), and from a loss of 1.86 dB(A) to 0.84 
dB(A). This indicates that the addition of environmental data 
enhances the model’s ability.

Figure 8 compares the predicted WTN results obtained using two 
input configurations: with (left) and without (right) environmental 
data. The real WTN levels (LWTN) and the predicted ones ( ˆ

iWTNL ) 
are plotted alongside the real and predicted background noise 
levels (LBN and ˆ

iWTNLBN), with the total noise (LTN) in red.

The left panel shows that when wind speed and power generation 
are incorporated into the model, the predicted WTN signal 
closely aligns with the actual measurements. The predicted ˆ

iWTNL  
almost perfectly overlaps with the real LWTN, confirming the 
model’s ability to accurately capture WTN dynamics. This also 
enables precise estimation of background noise ( ˆ

iWTNLBN) through 
decomposition from the total noise.

In contrast, the right panel shows the model performance using 
only acoustic features. Here, slight deviations between predicted 
and real WTN are visible, particularly during fluctuations in total 
noise. These discrepancies propagate to the estimated background 
noise, as seen in the divergence between real and predicted LBN.

Figure 8: Comparison of predicted wind turbine noise with 
and without environmental data. Left: model using acoustic 
and environmental features. Right: model using only acoustic 
features

To better visualize the impact of including environmental data, 
we compare the ground truth WTN with the predicted WTN 
using two model configurations. As shown in Figure 9, the 
blue curve represents the ground truth, while the red and black 
curves correspond to the model predictions with and without 
environmental data, respectively.

The model incorporating environmental inputs (red curve) 
demonstrates a strong ability to follow the underlying trend of 
the ground truth. It closely captures both the gradual rise and the 
eventual plateau of the WTN signal.

In contrast, the model without environmental data (black curve) 
exhibits higher variance and abrupt fluctuations that deviate 
significantly from the actual trend. This erratic behavior—
especially noticeable during the mid and late intervals—highlights 
the model’s limited capacity to infer WTN characteristics based 
only on acoustic features in this test set sample, with an observed 
error trend of approximately ±0.5 dB(A).

This comparison reinforces the earlier observation that 
environmental data leads to more stable and reliable predictions 
of WTN.

Figure 9: Comparison of WTN OASPL prediction using models 
with (red) and without (black) environmental data. The blue 
curve shows the ground truth label

Conclusion
In this work, we proposed and evaluated an LSTM-based 
sequence-to-sequence (seq2seq) model for estimating wind 
turbine noise (WTN) levels from acoustic measurements, with 
particular attention to the role of environmental data. Our 
findings demonstrate the capability of recurrent neural networks 
(RNNs) to learn meaningful patterns from acoustic signals, 
yielding robust performance even under challenging conditions 
with high WTN levels. While both model configurations showed 
promising results, the inclusion of environmental variables led 
to significantly more accurate predictions. This performance gap 
highlights the importance of contextual information in capturing 
the temporal and spectral dynamics of WTN signals. To improve 
robustness, a customized output activation function was adopted 
along with the Huber loss, which effectively handles outliers and 
stabilizes training.

For future work, we aim to develop more realistic and diverse 
simulated WTN datasets to better train and evaluate the models. 
This includes incorporating additional environmental variables, 
generating complex and varied acoustic scenes using advanced 
wind turbine noise models, and leveraging more sophisticated 
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deep learning architectures such as attention mechanisms and 
convolutional neural networks (CNNs). These enhancements 
are expected to enable a deeper investigation and comparison 
of existing deep learning techniques applied to WTN level 
estimation from acoustic input data.

References
1.	 Freiberg A, Schefter C, Girbig M, Murta VC, Seidler A. 

Health effects of wind turbines on humans in residential 
settings: Results of a scoping review. Environmental 
research. 2019. 169: 446-463.

2.	 Gloaguen JR, Ecotière D, Gauvreau B, Finez A, Petit A, Le 
Bourdat C. Automatic estimation of the sound emergence of 
wind turbine noise with nonnegative matrix factorization. 
The Journal of the Acoustical Society of America. 2021. 
150 :3127-3138.

3.	 Huang PS, Kim M, Hasegawa-Johnson M, Smaragdis P. 
Deep learning for monaural speech separation. In2014 
IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP). IEEE.  2014. 1562-1566.

4.	 Zhang C, Zhan H, Hao Z, Gao X. Classification of 
complicated urban forest acoustic scenes with deep learning 
models. Forests. 2023. 14: 206.

5.	 Gorin A, Makhazhanov N, Shmyrev N. DCASE 2016 
sound event detection system based on convolutional 
neural network. IEEE AASP Challenge: Detection and 
Classification of Acoustic Scenes and Events. 2016. 1-3.

6.	 Anicic O, Petković D, Cvetkovic S. Evaluation of wind 
turbine noise by soft computing methodologies: A 
comparative study. Renewable and Sustainable Energy 
Reviews. 2016. 56: 1122-1228.

7.	 Mun S, Shon S, Kim W, Han DK, Ko H. A novel 
discriminative feature extraction for acoustic scene 
classification using RNN based source separation. IEICE 
TRANSACTIONS on Information and Systems. 2017. 100: 
3041-3044.

8.	 Cotté B. Extended source models for wind turbine noise 
propagation. The Journal of the Acoustical Society of 
America. 2019. 145: 1363-1371.

9.	 Han J, Kamber M, Mining D. Concepts and techniques. 
Morgan kaufmann. 2006. 340: 94104-103205.

10.	 Hochreiter S, Schmidhuber J. Long short-term memory. 
Neural computation. 1997. 9: 1735-1780.


