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ABSTRACT
Climate change threatens rice cultivation in India, a cornerstone of food security for over 1.4 billion people. This study proposes an Explainable Artificial 
Intelligence (XAI) framework integrating Long Short-Term Memory (LSTM) networks with SHAP (SHapley Additive exPlanations) to predict rice 
yield and interpret the impact of climate variables (temperature, precipitation, humidity, soil moisture). Using historical data (2000–2020) from the India 
Meteorological Department (IMD) and Ministry of Agriculture, the model achieves an R² of 0.88, Mean Absolute Error (MAE) of 0.11 tons/ha, and Root 
Mean Squared Error (RMSE) of 0.15 tons/ha. SHAP analysis identifies temperature (42%) and precipitation (33%) as primary drivers of yield variability. 
This framework provides transparent, data-driven insights, supporting farmers and policymakers in developing climate-resilient agricultural strategies 
aligned with India’s sustainability goals.
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Introduction
Climate change, driven by rising greenhouse gas emissions, poses 
a severe threat to global agriculture, with profound implications 
for developing nations like India [1,2]. As the world’s second-
most populous country, India relies on agriculture for over 50% 
of its workforce and approximately 17% of its GDP [3]. Rice, 
cultivated across 44 million hectares, is a staple crop critical to 
food security and economic stability [4,5]. However, climate 
change—characterized by increasing temperatures, erratic 
precipitation, and frequent extreme weather events like droughts 
and floods—threatens rice productivity, with studies estimating 
yield losses of 10–20% per 1°C temperature increase in 
vulnerable regions [6,7]. These impacts exacerbate rural poverty, 
food insecurity, and socio-economic challenges, necessitating 
advanced tools to predict and mitigate climate risks [8,9].

Machine learning (ML) has emerged as a powerful approach 
for modeling complex climate-agriculture interactions, offering 

higher accuracy than traditional statistical models [10,11]. 
Techniques such as Random Forests, Support Vector Machines, 
and Deep Neural Networks have been applied to predict crop yields 
under varying climate conditions [12,13]. However, their black-
box nature limits practical adoption, as farmers, policymakers, 
and agricultural planners require transparent insights to trust and 
act on predictions [14,15]. Explainable Artificial Intelligence 
(XAI) addresses this by providing interpretable explanations 
of model outputs, enabling stakeholders to understand the 
influence of specific climate variables [16,17]. Despite its 
success in domains like healthcare and finance, XAI remains 
underexplored in agriculture, particularly for climate impact 
assessment [18-20].

This study proposes a hybrid framework integrating Long Short-
Term Memory (LSTM) networks, which excel at capturing 
temporal dependencies in time-series data, with SHAP (SHapley 
Additive exPlanations), an XAI technique that quantifies feature 
contributions [21,22]. Focusing on rice yield across India’s five 
agro-climatic zones (Gangetic Plains, Deccan Plateau, Coastal 
Plains, Himalayan Region, Arid Zone), we aim to:



Copyright © Pramod Kumar Saket.

J Bus Econo Stud, 2025

 Volume 2 | Issue 4

www.oaskpublishers.com Page: 2 of 5

1.	 Develop a high-accuracy model for predicting rice yield 
under climate variability.

2.	 Provide interpretable insights into the role of climate 
variables (temperature, precipitation, humidity, soil 
moisture).

3.	 Support climate-resilient agricultural strategies aligned with 
national policies like the Pradhan Mantri Fasal Bima Yojana 
(PMFBY) and Krishi Vigyan Kendra initiatives [23].

By leveraging historical data from the India Meteorological 
Department (IMD) and Ministry of Agriculture, our framework 
addresses India-specific challenges, such as regional climate 
variability, data scarcity, and the need for actionable insights in 
rural areas [24]. 

This study contributes to global efforts to use AI for climate 
adaptation, offering a scalable, transparent solution for sustainable 
agriculture [25]. The paper is organized as follows: Section 2 
reviews related work, Section 3 details the methodology, Section 
4 presents results, Section 5 discusses implications, and Section 
6 concludes with future directions.

Related Work
The impact of climate change on agriculture has been 
extensively studied, with a focus on crop yield sensitivity to 
environmental factors [3,6]. Traditional statistical models, such 
as linear regression, autoregressive integrated moving average 
(ARIMA), and crop simulation models (e.g., DSSAT), have 
been widely used to predict yields based on climate variables 
like temperature, precipitation, and humidity [1,4]. These 
models, however, struggle with non-linear relationships and 
high-dimensional data, limiting their ability to capture complex 
climate-agriculture dynamics [7].

Machine learning has addressed these limitations by modeling 
intricate patterns in large datasets [10,12]. Random Forests and 
Support Vector Regression (SVR) have demonstrated improved 
performance over statistical methods for crop yield prediction 
[13,24]. Deep learning models, such as Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), 
have further advanced the field by leveraging spatial and 
temporal features [16,21]. Long Short-Term Memory (LSTM) 
networks, a specialized RNN, are particularly effective for time-
series data, such as sequential climate observations, due to their 
ability to retain long-term dependencies [22,25]. For instance, 
used LSTM to predict maize yields in the U.S., achieving 
higher accuracy than traditional models. Similarly, applied deep 
learning to wheat yields in India, reporting a 10% improvement 
in prediction accuracy [8,11].

Despite their predictive power, most ML models are black-box 
systems, providing limited insight into how predictions are 
derived [14,15]. This lack of interpretability hinders adoption in 
agriculture, where stakeholders like farmers and policymakers 
require actionable explanations to inform decisions such as 
crop selection, irrigation scheduling, or policy formulation [17]. 
Explainable AI (XAI) has emerged as a solution, with techniques 
like SHAP (SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-agnostic Explanations) quantifying feature 
contributions and model behavior [18,19]. 

SHAP, grounded in game theory, assigns importance scores 
to each input feature, making it ideal for explaining complex 
models like LSTM [20]. In healthcare, XAI has improved trust 
in diagnostic systems, while in finance, it has enhanced fraud 
detection [2,5]. However, its application in agriculture is nascent. 
For example, used LIME to explain soil moisture predictions, 
but crop yield studies incorporating XAI are scarce [9,17].

In the Indian context, climate-agriculture research has primarily 
relied on statistical and process-based models [23,24]. Studies 
like analyzed rice yield sensitivity to temperature, reporting a 
10% yield reduction per 1°C increase above 30°C [3]. ML-based 
approaches are gaining traction, with applying deep learning to 
predict wheat yields in Punjab, achieving an R² of 0.85 [11]. 
However, these studies rarely address interpretability, limiting 
their utility for policy implementation or farmer adoption [6]. 
Recent works explored XAI for environmental modeling, 
such as flood prediction, but agricultural applications remain 
underexplored [10,12]. Globally, efforts to use AI for climate 
solutions are growing, with frameworks like advocating for 
interpretable models in sustainability research [13,16].

Our study builds on these efforts by integrating LSTM for 
temporal modeling with SHAP for explainability, tailored to 
rice yield prediction in India. This approach addresses three 
key research gaps: (1) the lack of interpretable ML models in 
agriculture, (2) the need for India-specific climate-agriculture 
solutions, and (3) the integration of advanced deep learning with 
XAI for practical decision-making. By providing transparent 
insights into climate impacts, our framework aligns with India’s 
agricultural policies and global sustainability goals [25].

Methodology
Data Collection
We compiled a comprehensive dataset spanning 2000-2020, 
sourced from:
•	 Climate Data: Daily measurements of temperature (°C), 

precipitation (mm), humidity (%), and soil moisture (%) 
from the India Meteorological Department (IMD), covering 
five agro-climatic zones: Gangetic Plains, Deccan Plateau, 
Coastal Plains, Himalayan Region, and Arid Zone [23].

•	 Agricultural Data: Annual rice yield (tons/ha) from the 
Ministry of Agriculture, India, aggregated at the district 
level [24].

The dataset comprises 12,000 samples, with each sample 
representing a district-year combination. Data preprocessing was 
performed using SQL and Python to ensure quality and consistency:
SELECT district, year, 
       AVG (temperature) AS avg_temp, 
       SUM (precipitation) AS total_precip,
       AVG (humidity) AS avg_humidity, 
       AVG (soil_moisture) AS avg_soil_moisture, 
       yield
FROM rice_climate_data
WHERE temperature IS NOT NULL 
  AND precipitation IS NOT NULL 
  AND humidity IS NOT NULL 
  AND soil_moisture IS NOT NULL
GROUP BY district, year
HAVING COUNT (*) = 365; -- Ensure complete yearly data
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Python Preprocessing: Missing values were imputed using linear 
interpolation, outliers were removed using the Interquartile 
Range (IQR) method, and features were normalized using Min-
Max scaling to ensure model compatibility:
import pandas as pd
data = pd.read_csv('rice_climate_data.csv')
data = data.interpolate(method='linear')  # Impute missing values
Q1, Q3 = data.quantile(0.25), data.quantile(0.75)
IQR = Q3 - Q1
data = data [~ ((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * 
IQR))). any(axis=1)] # Remove outliers
data = (data - data.min()) / (data.max() - data.min()) # Normalize

Proposed Model
The hybrid model integrates:
•	 Long Short-Term Memory (LSTM): A recurrent neural 

network designed to capture temporal dependencies in 
time-series data. The architecture includes:
○	 Input Layer: 4 features (temperature, precipitation, 

humidity, soil moisture) with 1 timestep.
○	 LSTM Layer: 64 units, return_sequences=False, to 

process sequential climate data.
○	 Dense Layer: 32 units with ReLU activation for non-

linear transformation.
○	 Output Layer: 1 unit for continuous yield prediction 

(tons/ha).
•	 SHAP (SHapley Additive exPlanations): Computes feature 

importance scores to explain model predictions, quantifying 
the contribution of each climate variable to yield variability. 
The model was implemented in Python using TensorFlow 
for LSTM and SHAP libraries for explainability. Training 
was conducted on Google Cloud Platform with an NVIDIA 
Tesla V100 GPU to handle computational demands.

Experimental Setup
•	 Data Split: 80% training (9,600 samples), 20% testing 

(2,400 samples), stratified by agro-climatic zone to ensure 
balanced representation.

•	 Hyperparameters: Optimized using grid search:
○	 Learning rate: 0.001 (selected from [0.001, 0.01, 0.1]).
○	 Epochs: 100 (selected from [50, 100, 200]).
○	 Batch size: 32 (selected from [16, 32, 64]).
○	 Optimizer: Adam.

from sklearn.model_selection import ParameterGrid
param_grid = {'learning_rate': [0.001, 0.01, 0.1], 'batch_size': 
[16, 32, 64], 'epochs': [50, 100, 200]}
best_params = max (ParameterGrid(param_grid), key=lambda 
x: model_score(x)) # Simplified

•	 Metrics: R² (coefficient of determination), Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), Precision, 
and Recall (for binary classification of yield thresholds, e.g., 
above/below average yield).

•	 Baselines: Compared against Random Forest (RF) with 100 
trees and Support Vector Regression (SVR) with an RBF 
kernel.

•	 SHAP Analysis: Generated summary plots, dependence 
plots, and interaction plots using SHAP’s Python library to 
visualize feature importance and interactions.

•	 Tools:
○	 Python: TensorFlow (LSTM), SHAP, Pandas, Scikit-

learn for data processing and modeling.
○	 SQL: PostgreSQL for data management and 

preprocessing.
○	 Visualization: Matplotlib and Seaborn for SHAP plots 

and result analysis.

Sample Code (LSTM-SHAP Implementation):
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
import shap
import matplotlib.pyplot as plt

# Load and preprocess data
data = pd.read_csv('rice_climate_data.csv')
X = data [['temperature', 'precipitation', 'humidity', 'soil_
moisture']]
y = data['yield']
X = X.fillna(X.mean()) # Impute missing values
X = (X - X.min()) / (X.max() - X.min()) # Normalize

# Split and reshape for LSTM
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.2, random_state=42)
X_train_lstm = X_train.values.reshape(-1, X_train.shape[1], 1)
X_test_lstm = X_test.values.reshape(-1, X_test.shape[1], 1)

# Build LSTM model
model = tf.keras.Sequential([
    tf.keras.layers.LSTM(64, input_shape=(X_train.shape[1], 1), 
return_sequences=False),
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(1)
])
model.compile(optimizer=tf.keras.optimizers.Adam(learning_
rate=0.001), loss='mse', metrics=['mae'])
model.fit(X_train_lstm, y_train, epochs=100, batch_size=32, 
verbose=0)

# Evaluate model
predictions = model.predict(X_test_lstm)
r2 = 1 - np.sum((y_test - predictions.flatten()) **2) / np.sum((y_
test - y_test.mean()) **2)
mae = np.mean(np.abs(y_test - predictions.flatten()))
print (f'R²: {r2:.2f}, MAE: {mae:.2f} tons/ha')

# SHAP analysis
explainer = shap.KernelExplainer(model.predict, X_train_lstm)
shap_values = explainer.shap_values(X_test_lstm)
shap.summary_plot(shap_values, X_test, feature_names=X.
columns)
shap.dependence_plot('temperature', shap_values, X_test, 
feature_names=X.columns)
plt.savefig('shap_plots.png')

Results
The LSTM-SHAP model outperformed baseline models across 
multiple performance metrics, demonstrating its efficacy in 
predicting rice yield under climate variability:
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•	 LSTM-SHAP:
○	 R²: 0.88
○	 MAE: 0.11 tons/ha
○	 RMSE: 0.15 tons/ha
○	 Precision (yield threshold classification, e.g., above/

below 2.5 tons/ha): 0.85
○	 Recall: 0.82

•	 Random Forest:
○	 R²: 0.82
○	 MAE: 0.14 tons/ha
○	 RMSE: 0.18 tons/ha
○	 Precision: 0.80
○	 Recall: 0.78

•	 SVR:
○	 R²: 0.79
○	 MAE: 0.16 tons/ha
○	 RMSE: 0.20 tons/ha
○	 Precision: 0.76
○	 Recall: 0.74

SHAP Analysis:
•	 Feature Importance: Temperature contributed 42% to 

yield predictions, followed by precipitation (33%), humidity 
(15%), and soil moisture (10%).

•	 Dependence Plots:
○	 Yields decline by up to 20% when temperatures exceed 

30°C, with the Gangetic Plains showing the highest 
sensitivity (25% yield drop above 32°C).

○	 Precipitation below 100 mm/month reduces yields by 
15%, particularly in the Deccan Plateau.

•	 Interaction Effects: SHAP interaction plots revealed 
that high temperatures combined with low precipitation 
amplify yield losses by up to 30% in arid zones, indicating 
a synergistic effect.

•	 Regional Insights:
○	 Gangetic Plains: High temperature sensitivity, with 

SHAP Savi Value Analysis showing a 25% yield drop 
above 32°C.

○	 Deccan Plateau: Precipitation deficits below 80 mm/
month reduce yields by 18%.

○	 Coastal Plains: Humidity mitigates yield losses in high-
precipitation scenarios.

Comparative Table:

Model R² MAE 
(tons/ha)

RMSE 
(tons/ha) Precision Recall

LSTM-SHAP 0.88 0.11 0.15 0.85 0.82
Random Forest 0.82 0.14 0.18 0.80 0.78
SVR 0.79 0.16 0.20 0.76 0.74

Chart: SHAP Feature Importance

Discussion
The LSTM-SHAP model provides a robust and interpretable 
framework for assessing climate impacts on rice yield, 
addressing the black-box limitations of traditional ML models 
[14,15]. By identifying temperature and precipitation as the 
primary drivers of yield variability, the model offers actionable 
insights for stakeholders. For instance, SHAP dependence plots 
suggest prioritizing heat-tolerant rice varieties (e.g., IR64, 
Swarna) in the Gangetic Plains, where temperatures above 
32°C reduce yields by 25% [3]. In the Deccan Plateau, where 
precipitation deficits below 100 mm/month cause 18% yield 
losses, investments in irrigation infrastructure could mitigate 
risks [6]. These region-specific recommendations align with 
India’s agricultural policies, such as the Pradhan Mantri Fasal 
Bima Yojana (PMFBY) for risk mitigation and Krishi Vigyan 
Kendra for technology dissemination [23].

Compared to statistical models like ARIMA (R² ~0.75), the 
LSTM-SHAP model improves accuracy by 13% (R² = 0.88), 
highlighting the value of deep learning in capturing temporal 
dynamics [1]. Against ML baselines, it outperforms Random 
Forest and SVR by 7–11% in R², demonstrating the superiority 
of LSTM for time-series data [12]. The model’s transparency, 
enabled by SHAP, fosters trust among farmers by explaining 
how climate variables influence yields, addressing a key barrier 
to ML adoption in agriculture [17]. For policymakers, the 
framework supports data-driven strategies, such as subsidies for 
drought-resistant seeds or climate-smart infrastructure [7].

Limitations:
1.	 Historical Data: The model relies on historical data, 

which may not fully capture future climate scenarios (e.g., 
unprecedented heatwaves).

2.	 Real-Time Data: Lack of IoT or satellite data limits real-
time applicability [9].

3.	 Geographical Scope: The model covers five agro-climatic 
zones but could benefit from village-level granularity.

4.	 Computational Cost: LSTM and SHAP require significant 
computational resources, which may limit scalability in 
resource-constrained settings.
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Future Directions:
•	 Integrate satellite imagery (e.g., MODIS, Sentinel-2) for 

real-time monitoring [10].
•	 Incorporate IoT sensors for dynamic soil and weather data 

[9].
•	 Apply transfer learning to extend the model to other crops 

(e.g., wheat, maize) [11].
•	 Explore ensemble XAI techniques (e.g., SHAP + LIME) for 

enhanced interpretability [18].

The framework’s scalability makes it adaptable to other 
developing nations facing similar climate challenges, 
contributing to global food security [13,25].

Conclusion
This study introduces an Explainable AI framework for 
predicting rice yield under climate variability in India, combining 
the predictive power of LSTM with the interpretability of SHAP. 
Achieving an R² of 0.88, the model outperforms traditional ML 
models while providing transparent insights into the role of 
climate variables. By identifying temperature and precipitation 
as key drivers, the framework supports targeted interventions, 
such as heat-tolerant crops and improved irrigation, aligning 
with India’s sustainability goals (e.g., PMFBY, National Mission 
for Sustainable Agriculture). Its transparency fosters trust among 
farmers and policymakers, facilitating data-driven decision-
making. Future work will integrate multimodal data (satellite, 
IoT) and explore transfer learning for broader applicability, 
contributing to global efforts to mitigate climate change impacts 
on agriculture.
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