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ABSTRACT
Background: Dental caries is a prevalent oral health issue, and early diagnosis using X-ray images can significantly improve treatment
outcomes. Deep learning techniques have been increasingly employed for automated detection of dental caries in radiographic images.

Objectives: This study aims to evaluate the effectiveness of deep learning models, including Convolutional Neural Networks (CNNs) and
transfer learning approaches, in identifying dental caries using periapical radiographs.

Methods: We utilized a traditional CNN model along with transfer learning models, including Visual Geometry Group (VGG16, VGG19),
ResNet50, and Inception V3. The CNN model consisted of three sets of 2D convolutional layers followed by activation, max-pooling,
flatten, dense layers, dropout, and final activation layers. For the transfer learning models, the top convolutional layers were frozen to prevent
retraining, allowing only the last layers to be trained. Hyperparameters were optimized using a grid search approach, and model performance
was validated using the Shuffle-Split-Cross (SSC) validation method.

Results: Ten images were generated for each original image, resulting in a total of 1,150 training dataset images. The accuracy achieved by
the CNN, VGG16, VGG19, ResNet50, and Inception V3 models was 90%, 96%, 73%, 70%, and 73%, respectively. Among these, VGG16
exhibited the highest accuracy.

Conclusions: The findings demonstrate that transfer learning, particularly with VGG16, is highly effective in diagnosing dental caries from
periapical radiographs. These results highlight the potential of deep learning models for improving automated dental diagnostics. Transfer
learning, especially with VGG-16, achieved the highest accuracy (96%) in this study, outperforming both traditional CNN and related studies,
highlighting its effectiveness for dental caries detection.

Keywords: Deep Learning, Dental Caries, Transfer Learning,
X-Ray Images, Convolutional Neural Network

Introduction

Dental caries is caused by pathogenic bacteria. Pathogenic
bacteria cause dental caries by attacking the dentin of the
teeth and initiating their destruction. The primary pathogens
responsible for dental caries include Villanelle, Aggregatibacter,
Leptotrichia, Bacteroides, Granulicatella, Streptococcus, and
Prevotella. Approximately 80% to 90% of the global population
is affected by dental caries [1]. According to the World Health

Organization (WHO), individuals residing in industrialized
regions are more prone to dental caries due to unhealthy
lifestyles, including increased sugar consumption and high
fluoride exposure [2]. Radiography is considered one of the most
effective methods for detecting all types of caries, particularly
hidden ones [3].

Dental caries are curable if diagnosed at an early stage. In modern
dentistry, early detection and recognition of caries initiation
is a major concern [4]. Both traditional and convolutional
approaches have been explored for the detection of dental caries
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[5]. Among non-invasive techniques, the Quantitative Light-
Induced Fluorescence-Digital (QLF-D) method is considered
one of the most effective for detecting caries [6].

Despite ongoing advancements, detection and treatment methods
have not shown significant improvements over the past few
decades, primarily due to the complex morphological anatomy
of teeth. While existing techniques are effective for detecting
advanced or moderate caries, they often fail to identify caries
at early stages [7]. These methods struggle with detecting deep
fissures, tight interproximal contacts, and secondary lesions on
teeth.

If not detected early, caries can spread beyond the affected tooth
to neighboring teeth [8,9]. Evidence shows that individuals
in underdeveloped countries, particularly those with low to
middle incomes and limited education, are most affected by
dental caries. The high cost of treatment makes dental care
inaccessible for many, leading to a surge in oral health problems
and potentially contributing to systemic diseases such as
cardiovascular disorders, cancer, chronic respiratory diseases,
and diabetes [10]. These challenges highlight the urgent need
for an affordable, automated algorithmic system capable of
detecting all types of caries at early stages, thereby minimizing
dependence on extensive human expertise.

A human tooth primarily consists of three tissues: enamel,
dentin, and pulp. Bacterial pathogens can attack any of these
layers, resulting in enamel caries, dentinal caries, or pulpal
caries, respectively [11]. Affected teeth often appear spongy,
rough, decayed, broken, and may show discoloration. Various
image processing techniques have been applied for dental
caries detection, typically followed by machine learning or
deep learning models [12]. These techniques generally involve
steps such as preprocessing, localization, data splitting, model
training, and classification [13]. However, accurate early-stage
detection of dental caries remains a significant challenge. Recent
studies have demonstrated that deep learning algorithms can
achieve outstanding performance in the medical domain [14].

This study contributes by employing CNN and transfer learning
models—specifically VGG-16 and VGG-19—for the detection
of dental caries using periodic radiographs. To the best of our
knowledge, these models have not been previously applied to
this problem in the existing literature. The traditional CNN
architecture used comprises three sets of 2D convolutional
layers, activation layers, max-pooling layers, a flattening layer,
dense layers, activation layers, dropout, and final output layers.
In the VGG models, the top convolutional layers are frozen to
preserve learned features, while only the final layers are retrained
to generate the desired output.

Literature Review

Deep learning models are employed for preprocessing,
segmentation, feature extraction, detection, and classification
tasks. Lee and colleagues utilized deep convolutional neural
network models to detect and diagnose dental caries using
periapical radiography images. The GoogleNet Inception
V3 (GNIV3) was used for data preprocessing [15]. Another
study noted that dental images obtained through Computed
Tomography (CT) have a limited range of properties such as

sensitivity and geometric values. To address these challenges,
the researchers found deep convolutional neural networks to be
highly beneficial, particularly for resolution enhancement. They
specifically highlighted two CNN models, U-Net and the Sub-
Pixel network, in their work for enhancing image resolution. The
proposed models exhibited significantly improved performance
for CT images, aiding in the enhanced detection of medical
attributes such as shape and size [16].

The study proposed an automated system that performs
segmentation of dental images based on pixel values [17].
Furthermore, the researchers utilized a deep convolutional
neural network for segmenting and labeling the affected areas
of the teeth, such as those impacted by gingival issues. They
employed a 3D tooth model as input, utilizing a CNN model
with a two-level hierarchy. First, the teeth were labeled, and
then the extracted features were fed into the neural network
model. The approach by Cantu et al, achieved a remarkable 99%
accuracy [18].

The literature indicates that deep learning models are widely
utilized for the classification and detection of caries-infected
teeth. Numerous researchers have proposed various models in
different forms for classification purposes. Fully convolutional
neural networks have been employed for estimating the
probabilities of caries. One study proposed a model based on
CNN called ‘Automated Dental Red Autofluorescence Plaque
Image Classification’ for classifying QLF images. The study by
A. Betul and Oktay demonstrated the use of a CNN model for
the classification of tooth and non-tooth areas by employing
tooth proposals [19]. Another article by Naam et al focused on
the automated assessment of lower third molar development from
panoramic radiographs using a pilot technique. Machine Learning
(ML) algorithms were utilized to train the dataset, with deep
convolutional neural networks employed for classification [20].

Moreover, a machine learning approach was employed for the
classification of healthy gums versus unhealthy gums. The
study utilized a database of 251 Radiovisiography (RVG) dental
images, containing images related to three oral diseases: caries,
periapical infection, and periodontitis. The research team utilized
both a CNN model and VGG 16 model for disease classification,
achieving 73% accuracy with the CNN model and 88% accuracy
with VGG16 [21]. Additionally, a Computer-Aided Diagnosis
(CAD) system was proposed for the detection of dental
caries, utilizing a bitewing radiographs database consisting
of 3000 images. This system was based on a Fully Connected
Convolutional Neural Network (FCNN) containing over 100
layers. The model effectively classified infected and non-infected
teeth [22]. In another study, K. Moutselos et al, panoramic
X-ray images were used and classified into incisors, molars, and
premolars using a CNN model, specifically a modified version
of AlexNet [23]. In situations such as major disasters like bomb
blasts where identification becomes incredibly challenging due
to the loss of many lives, dental forensic identification tests are
crucial. However, labeling a large dataset during such disasters is
considered highly complicated for general dentists. Deep CNN-
based models have proven to be invaluable in these scenarios,
as they are utilized for the detection and classification of teeth.
The study employed AlexNet for the classification of identified
teeth [23].
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This model achieved an accuracy of 77.4%. Deep learning models
prove to be very beneficial for comparative studies. For instance,
CNN models are utilized to classify periapical teeth based on
their condition after treatment into three classes: ‘getting better,’
‘getting worse,” or ‘no change,’ achieving a 74% F1 score [24].
In another study, the machine learning algorithm Support Vector
Machine (SVM) was used to classify caries-infected and non-
infected teeth using a panoramic image database for identifying
proximal dental caries. This model achieved an accuracy of
81% [25]. A Neural Network was employed for the detection of
dental caries using a database of periapical radiographs. They
utilized an Adaptive Neural Network for this purpose, achieving
an impressive 94% accuracy [25]. Machine learning models
are divided into two categories: supervised learning models
and unsupervised learning models. Unsupervised learning
techniques are employed for the detection of dental caries
through nonstandardized X-ray images [26]. CNN techniques
are also used to differentiate between various treated teeth, such
as cavity fillings, implants, and root canal-treated teeth [27]. In
another study, the validity of CNN techniques was evaluated for
diagnosing dental caries in different types of teeth, including
proximal caries lesions on bitewing radiographs. [28].

Table 1: Performance in Term of Accuracy Comparison of
the Detection of Dental Caries Techniques Mentioned in the
Relevant Papers.

Reference Accuracy Reference Accuracy
[2] 51% [19] 94%
[3] 81% [20] 81%
[7] 74% [21] 71%
[8] 82% [23] 88.46%
[9] 83% [24] 84%

[13] 95% [25] 61%
[14] 95% [26] 90%
[15] 84% [27] 74%
[17] 74% [28] 81%
[18] 99% [29] 96%

Table 1 presents a performance comparison of dental caries
detection techniques along with their respective accuracies. CNN
demonstrates exceptional performance in the fields of computer
vision and image processing. CNN models offer solutions to the
aforementioned challenges. They possess the learning ability to
acquire features. There are several reasons for employing CNN
models:

*  CNN serves as an excellent feature extractor, autonomously
learning features deeply from images.

o It has the capability to exploit spatial and temporal
correlation data.

*  CNN can learn feature representations specific to a dataset;
for example, it can identify hidden features that may be
overlooked by dentists, such as proximal caries.

¢ CNN models automatically discover all deep or hidden
features from large datasets, eliminating the need for expert
intervention in image processing.

Table 2: Techniques Mentioned by Relevant Papers for
Detection of Dental Caries

Author Technique(s) Authors | Technique

[2] F-CNN [20] CNN

3] Google Net Inception 21] CNN
V3

[4] | U-net [22] ML
Adaptive Neural VGG-16

[3] Network (ADA) 23]

[6] VGG16 CNN [24] CNN

[7T | Alex Net [25] F-CNN
Mask-RCNN Modified

[8] [26] Alex Net
Squeeze Net, CNN model
MobileNet-v2, Google

[12] Net, ResNet-18 and [27]
ResNet-50

[15] Google Net Inception 28] SVM
V3

[17] |ML [29] VGG19-CNN

Table 2 presents a performance comparison of dental caries
detection techniques, where CNN not only demonstrates good
performance in the field of dental caries but also in other domains.
In dentistry, caries is detected through periapical and panoramic
radiographs, as well as bitewing radiographs. Ocular caries is
easily detected, but deep learning models yield impressive
results in diagnosing proximal caries [29]. Deep learning models
such as ANN, DNN, RNN, and CNN are also utilized in various
medical fields, including the diagnosis of brain tumors, lung
cancer, eye infections, digital pathology, chest and abdominal
issues, musculoskeletal disorders, and dermatological diseases,
among others. Deep Neural Networks (DNN) represent a class
of deep learning models, employed for detecting and classifying
Alzheimer’s disease, as well as for segmenting brain tissues.
Additionally, various ophthalmic diseases are diagnosed using
deep learning models [30]. A simple CNN model is employed for
diagnosing Color Fundus Imaging (CFT), which finds application
in numerous ophthalmic disease-related tasks such as anatomical
structure segmentation, detection of retinal abnormalities, eye
disease diagnosis, and assessment of image quality [31]. CNN is
such type of neural network [32, 33] that is a powerful tool [34]
implemented by many researchers for feature extractions [35].

Proposed Work

This study utilized convolutional neural network models and
transfer learning models for diagnosing dental caries from
periapical radiographs. The primary research steps included
image acquisition, data augmentation, image preprocessing, and
training and validating the models using the cross-validation
method.

Image Acquisition

The process of gathering data is known as image acquisition.
The database of dental periapical images was collected in 2013
and published in 2016. This dataset was obtained from the
University Technology Malaysia (UTM) Health Center’s dental
clinic. The images were captured during regular checkups of
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university students at the clinic. The age group of the students
ranged between 25 and 35 years old. Patients were informed
about the data collection process. For this study, periapical
dental X-ray images were utilized. These dental X-ray data were
collected using a specialized X-ray machine. An intraoral X-ray
machine, directly linked to a digital scanner and software known
as “SIDEX XG,” was used to produce digital periodic dental
radiographs. The details of the dataset have been mentioned in
Table 3. The hardware and software utilized in the study are from
a German company named Sirona. The dataset specifications

Table 3: Details of Dataset

include 120 images in JPEG format, with dimensions of 748
x 512 pixels. There are three main types of tooth radiographs:
panoramic, bitewing, and periapical. The dataset used in this
research consists of periapical radiographs. Periapical X-rays
display all the teeth within one section, either the upper or
lower jaw. These X-rays are among the most cost-effective and
commonly used for diagnosing and treating dental conditions,
offering clear views of the tooth roots and surrounding bone
structures. This dataset is also publicly available.[9]

Total Images . . q
Dataset Type Origimalllmages Augmented (After Training Data Testing Data
Images . (80%) (20%)
Augmentation)
Dental Images 120 1030 1150 920 230

Data Cleaning

Data cleaning is a straightforward process involving three steps:
excluding blurred images, cropping, and flipping. All radiographs
include dimension values on their sides. The next step involved
flipping images to standardize all mixed images of the maxilla
and mandibular jaw into the mandibular jaw orientation using a
vertical flip.

Data Augmentation

The augmentation process was executed on the Keras framework
using the ImageDataGenerator (IDG) function. Data was
randomly generated with the following specifications: rotation
range of 40 degrees, width shift range of 0.2, height shift range
of 0.2, shear range of 0.2, zoom range of 0.2, horizontal flip set
to true, and fill mode set to ‘nearest.” Ten images were generated
for each original image, resulting in a total of 1,150 training
dataset images. Figure. 1 illustrates and describes the image
augmentation techniques employed, including rotation, width
shift, height shift, shear, and zoom range.

0 AR
%M""@E’

Figure 1: Image Augmentation Using Rotation-Range, Width
Shift & Height Shift-Range, Shear & Zoom-Range

Data Preprocessing

After cleaning the data, image enhancement was conducted to
improve the visibility of the images. In this study, images were
enhanced by adjusting three factors: brightness, sharpness (as
shown in Figure. 2b), and contrast (as shown in Figure. 2¢). For
this purpose, the ‘image enhance’ function from the PILLOW
library was utilized. Figure. 2 illustrates and describes the
sharpening and contrast adjustments made using the ‘image
enhance’ function, as well as the enhancement of brightness in
the images.

(b) Sharpness Enh

(a) Normal Image

Figure 2: Image Enhancement

Image Segmentation

The images were segmented using a supervised segmentation
method, employing three primary techniques: thresholding
algorithms, the random walker method, and the active contour
method. In thresholding algorithms, images are converted into
pixels, and a range of pixel values is defined by the user in
supervised data. This conversion transforms the images from
grayscale to binary form, where grayscale images typically
contain pixel values ranging from 0 to 255. The threshold
method divides the image pixels into two categories: black
and white, with pixels categorized below 150 and above 150
separately using the ‘threshold()’ function from the OpenCV
library, as depicted in Figure. 3b. Its invariance is also shown
in Figure. 3c. In the active contour method, a circle or line is
drawn around the Region of Interest (ROI), and this contour
expands or contracts based on light and edge information. In
our dataset, where multiple caries may be present in an image,
we required a method that could segment all pixels from areas
of small caries using predefined labels. The random walker
method proved to be the most suitable for this task. The random
walker method is particularly effective for segmenting a small
number of pixels from images. This approach utilizes predefined
pixels and ‘walks’ randomly to all unlabeled pixels, assigning
appropriate labels. It is especially useful for high-quality image
segmentation.

(b) Binary Grey Threshold

() Normal Image (¢) Binary Grey Threshold Invariance

Figure 3: Image Segmentation Shows the Normal Image, Binary
Grey Threshold and Binary Grey Threshold Invariance in Image
Segmentations.

Feature Extraction
There are various methods for extracting features from images,
such as using the Principal Component Analysis (PCA)
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method. PCA is utilized for the analysis of multivariate data
and is particularly effective for extracting linear features and
facilitating data comparisons. This method reveals only a few
features by compressing the original image data [reference for
claiming of compressing image]. However, deep learning models
including CNN Sequential Model, VGG16, VGG19, ResNet50,
and Inception V3, are also capable of automatically extracting
features from images. In this study, these models are employed
for detecting dental caries automatically extracted features. In
previous studies, the said models were used on fewer images
[limitation].

Training Models

This study utilized CNN Sequential Model, VGG16, VGG19,
ResNet50, and Inception V3 models. It was discovered that these
models had not been previously applied to the given dataset.
Details on the utilization of these models are provided below.

CNN Model

As shown in Figure. 4, the input images were scaled down to 250

x 250 x 1 to reduce computational expenses. Processing high-

dimensional images in their original dimensions would require

significant computation. However, reducing the dimensions

of images can sometimes result in the loss of information.

The proposed network comprises three sets of convolutional

layers, ReLU activation layers, and max-pooling layers. They

are followed by a sequence of layers: flatten, dense, activation,

dense, dense, and activation layer. This sequential model takes

input images of size 250 x 250 x 1. Here is a summary of the

inputs for all these layers:

e Input image size: 250 x 250 x 1

e Conv2D input layer size 250 x 250 x 1, Activation layer 248
x 248 x 32, Max pooling 248 x 248 x 32

e Conv2D input layer size 124 x 124 x 32, Activation layer
122 x 122 x 32, Max pooling 122 x 122 x 32

e Conv2D input layer size 61 x 61 x 32, Activation layer 59 x
59 x 64, Max pooling 61 x 61 x 32

*  Flatten layer input size: 29 x 29 x 64

e Dense layer with 53824 nodes, followed by an activation
with size 64, a dropout layer of 64 nodes, another dense
layer of 64 nodes, and an activation of size 1.

The kernel size is 3 x 3, all activation functions are ReLU, and
the final activation function is Sigmoid. Sigmoid activation is
applied to the last dense layer. The dropout layer has a size of 0.5
to mitigate the problem of overfitting.

Figure 4: Architecture of CNN Model

Transfer Learning

As shown in Figure. 5, VGG architectures are typically trained
on ImageNet. The workings of both VGG16 and VGG19 models
are the same; the only difference lies in their number of layers,
with VGG19 having more layers in its structure. Firstly, in the

implementation setup, the relevant packages must be imported.
For VGG16 and VGG19, input images are resized, scaling them
down to 224 x 224. The weights for the first three convolutional
layers of VGG16 are frozen, while the subsequent layers are
used for training. The concept of transfer learning is applied for
fine-tuning, enabling the model to learn basic low-level features
from the images in the dataset. These models are pre-loaded with
ImageNet weights.

The top convolutional layers are disabled. The weights of these
models are set to “ImageNet,” indicating that they are pre-
trained based on ImageNet. The model type is sequential, with
one flattening layer included without any parameters. Three
dense layers are added with units=256 and ReLU activation
functions in the first and second dense layers. The last dense
layer has units=3 with a “softmax’ activation function. All other
optional layers are excluded to make the model more adaptive to
the training data. The final dense layer with ‘softmax’ functions
as a binary classifier, distinguishing between carious and non-
carious teeth.

Image FunctionalLayer  FlattenLLa

yer  Dense Dense Dense

Image Size Input Input Input Input Input
226224 X1 224x224x1 77X512 1XX5088  IXIX2S6  1XIX3

Figure 5: Architecture of Transfer Learning Models

Inception V3

Inception V3 architectures are typically pre-loaded with
ImageNet weights. Firstly, in the implementation setup, the
relevant packages must be imported. For Inception V3, input
images are resized, scaling them down to 224 x 224 as shown in
Fig. 6 [17]. The weights for the first three convolutional layers of
Inception V3 are frozen, while the subsequent layers are used for
training. The concept of transfer learning is employed for fine-
tuning, enabling the model to learn basic low-level features from
the dataset images. These models are pre-loaded with ImageNet
weights. The top convolutional layers are disabled. The weights
of these models are set to ‘ImageNet,” indicating that they are
pre-trained based on ImageNet. The model type is sequential,
with one flattening layer included without any parameters. Three
dense layers are added with units=256 and ReLU activation
functions in the first and second dense layers. The last dense
layer has units=3 with a ‘softmax’ activation function. All other
optional layers are excluded to make the model more adaptive to
the training data. The final dense layer with ‘softmax’ functions
as a binary classifier, distinguishing between carious and non-
carious teeth.

ResNet 50

ResNet 50 architectures are typically pre-loaded with ImageNet
weights. Firstly, in the implementation setup, the relevant
packages must be imported. For ResNet 50, input images are
resized, scaling them down to 224 x 224 as shown in Figure. 7
[17]. The weights for the first 3 convolutional layers of ResNet
50 are frozen, while the subsequent layers are used for training.
The concept of transfer learning is employed for fine-tuning,
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allowing the model to learn some basic low-level features from
the dataset images. These models are pre-loaded with ImageNet
weights. The top convolutional layers are disabled. The weights
of these models are set to ‘ImageNet,” indicating that they are
pre-trained based on ImageNet.

Model: "sequential 17

Layer (type) Output Shape Param #

inception_v3 (Functional) (None, 5, 5, 2048) 21802784

Flatten_1 (Flatten) (None, 51200) °

dense_3 (Dense) (None, 256) 13107456

dense_a (Dense) (None, 256) 65792

dense_5 (Dense) (None, 3) 771

Total params: 34,976,203
Trainable params: 12,174,019
Non-trainable params: 21,802,784

Figure 6: Inceptionv3 model used for classification of dental
caries and non-infected teeth.

In Figure. 7, it is shown that the model type is sequential, with
one flatten layer included without any parameters. Additionally,
three dense layers are added with units=256 and ReLU activation

functions in the first and second dense layers. The last dense
layer has units=3 with a ‘softmax’ activation function. No other
optional layers are included. This is done to make the model
more adaptive to the training data. The final dense layer with
‘softmax’ functions as a binary classifier, distinguishing between
carious and noncarious teeth.

Model: “"sequential”

Layer (type)

resnetse (Functional)

Output Shape

(None, 7, 7, 2048) 23587712

flatten (Flatten) (None, 100352) e

dense (Dense) (None, 256) 25690368

dense_1 (Dense) (None, 256) 65792

dense_2 (Dense) (None, 2) 513

Total params: 49,344,386
Trainable params: 25,756,674
Non-trainable params: 23,587,712

Figure 7: Resnet 50 Model Used for Classification of Dental
Caries and Non-Infected Teeth

The adopted methodology and flow of this study is shown by
figure. 8

3 Flatten layer input size: 29 * 29 x 64

"

Binary classification

A} Caries teeth
B)

> Dropout layer with 64 nodes

=3 Another dense layer with 64 nodes

L3 Activation layer of size |
L

Deinse images cleaning e ; images augmentation by using 7 filters gheme 0.2
(available images) N= 120 > Blurred/cropped? =  cleaned images  =» Nl (N=150)
(J ‘horizonal fMip set
- - 5 5 Y5 Applying clearlmage Au, ted and filtered to true (N = 150]
Feature extraction Not included in study (N = 5) pplying B gmeni N )
b ks & Algo forclorty | iimages (N=1150) €]
— * | fill mode set to
TR _ Non-caries teeth Images segmentation using nearest (N = 180)
S""P'J“j‘% e Random Walker Method v "' v
2001 T of 0.2
Caries teeth brightness shﬂr:ncss '""G“Wd‘::’m': (Nm-—‘ggn]
[
> Tﬁh:ug dalﬂ:‘};;:umom rotation range of 40
v impe 20 v v degroes (N = 220)
“Training data set of random Testing of the trained CNN Testing of the trained transfer : .
i N =80% soquential model learning models height shift range of 0.2
images ¢ 4 2 (N =120)
— Layersof CNNmodel €= NN sequential model  royofer learning (vl 6, vizg19, ResNet I width shift range of 0.2
N = 100
L Input image size 250 x 250 x 1 ¥ Data validation { :
= Layers of transfer learning models L
Conv2D input layer size 250 x 250 = | =
> acivation layer 248 x 248 x 32 [ Inputimages layer 224 x 224 x | v v
= Functional layer 224 x 224 x | ROC Confusion matrix
Conv2D input layer size 124 x 124 x 32
> Activation layer 122 x 122 x 32 [ Flatenlayer 7x 7 x 512 AUC = 1.0 means perfect Accuracy = (TP + TN) / Total =
. 5 X classification (F9+T79)/(T9+24+7+79)= <
> First Ec:sa.u layer with ;:::wf!i& and 158 7 189 = §3.6%
Conv2D input layer size 61 x 61 x 32 LU activation tions -
o i b ?aungm‘o sfm "’”in: Precision (for Caries) = TP (TP +
N Second Dense layer with units = 256 FP)=79/(79 +24) = 76.7%
|5 Flatten layer 29 = 25 x 64 and ReLU activation functions & Recall (Scnsitivity) = TP/ (TP  FN)
. B Results
E 5 Third dense layer units = 3 and =79/ (79 +7)=91.9%
oo S > Softmax activation function in the
k> Activation layer with 64 nodes Dot e second drase Jver Specificity = TN/ (TN - FP)
=79/(79+24)=76.7% <«

Accuracies from training:

CNN shows 90%. YGG16 96%, VGGI9
73%, Inception V3 70% ResNet30 73%
Accuracies from validation:

CNN shows 74%, VGG16 96%. VGGI9
66%, Inception V3 69% ResNet50 66%

—

Non-caries
Figure 8: Methodology And Flow of This Study

Results

All employed models efficiently classify infected teeth from
non-infected ones. However, the transfer learning models
show better performance than the CNN sequential model. The
evaluation of these models is measured by evaluation metrics
named accuracy. A summary of the models’ results is provided
in Table 4. In the training process of the CNN sequential model,
a total of 20 epochs are needed to converge with a trained model,
achieving 90% accuracy. Table 3 illustrates the training process
of VGG16, VGG19, ResNet 50, and Inception V3 models, each
requiring a total of 5 epochs to converge with a trained model,

achieving accuracies of 96%, 73%, 70%, and 73%, respectively.
The VGG16 model demonstrates 6% higher accuracy than the
CNN model. Accuracy is measured as TP+TN/TP+TN-+FP+FN.
True Positive refers to teeth that are truly infected by dental
caries and are classified as caries-infected teeth. True Negative
refers to samples classified as non-infected, which are truly
healthy teeth. False Positive samples are healthy but erroneously
classified as caries-infected teeth. False Negative indicates teeth
classified as healthy by the model, but are actually infected by
caries. These terms are denoted as TP=True Positive, TN=True
Negative, FP=False Positive, and FN=False Negative.
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Table 4: Performance Evaluation in the Term of Training
and Validation Accuracy of Used Models

Model Training Validation
CNN 90% 70%
VGG16 96% 96%
VGI19 73% 66%
Inception V3 70% 69%
ResNet50 73% 66%

TP+TN/TP+TN+FP+FN. True Positive denotes teeth truly
infected by dental caries, also referred to as caries-infected teeth.
True Negative refers to samples classified as non-infected, which
are genuinely healthy teeth. False Positive represents samples
classified as healthy but incorrectly labeled as cariesinfected
teeth by the model. False Negative indicates teeth classified
as healthy by the model, but in reality, they are infected by

caries. These terms are denoted as: TP=True Positive, TN=True
Negative, FP=False Positive, FN=False Negative.

However, these flexibilities are valuable for experimenting
with large datasets. After validating the models, improvements
in their performance are necessary. This is achieved by tuning
parameters, which is both important and quite tricky. Finding the
optimal parameter values for models is crucial, and the process
can be complex. For parameter tuning, grid search is one of the
best methods because it explores all possible combinations of
parameters. Grid search is an approach that automatically selects
the most accurate combination of parameters to assess performance
validity and compare with other models. To implement grid search,
GridSearchCV is imported from the sklearn.model selection
library. Hyperparameters are parameters provided to machine
learning algorithms. In CNN algorithms, ‘batch size’ and ‘epochs’
are used as hyperparameters. The best combination is determined
through the grid search method, as shown in Table 5.

Table 5: Performance Evaluation in Terms of Training, Validation Accuracy and Loss of Used Models

Models g S Training Testing Training Validation Number of Batch Size
Accuracy Accuracy Loss Loss Epochs

CNN 250 x 250 x 1 73% 53% 0.58 0.74 20 10
sequential 200 x 200 x 1 68% 58% 0.67 0.67 10 5
i) 150 x 150 x 1 80% 58% 0.54 0.75 20 10
50 x 50 x 1 77% 55% 0.55 0.86 20 10

Transfer 250 x 250 x 1 68% 50% 0.97 0.57 10 3
Learning 250 x 250 x 1 70% 51% 0.55 0.47 14 2
Gl 204 x 224 x 1 79% 49% 0.19 0.76 15 3
224 x 224 x | 69% 53% 0.63 0.09 10 3

The graphs below depict the accuracy and loss of all these
models. Each model was trained using varying numbers of
epochs and image sizes. Included are graphs for the CNN
models and VGG models. Additionally, two other models,
namely ResNet 50 and Inception V3, utilized a different package
but share the same architecture as the VGG models. Accuracy
metrics include training and validation accuracy, as well as
training and validation loss.

N\

A) CNN model accuracy at size 50 x 50 x 1

B) CNN model loss at size 50 x 50 x 1

Figure 9: Cnn Model Graphs at the Size 50 x 50 x 1

Figure 9 shows the training and validation accuracy and shows
training and validation loss in CNN model graph at the size
5050 x 1.

Figure 10 shows the training and validation accuracy and also
shows training and validation loss in CNN model graph at the
size 150 x150 x 1.

A) CNN model accuracy at size 150 150 % 1 | B) CNN model loss at size 150 x 150 x 1

X
[

Figure 10: Cnn Model Graphs at the Size 150 x 150

B) CNN model loss at size 200 x 200 x 1

A) CNN model accuracy at size 200 x 200 x 1

Figure 11: Cnn Model Graphs at the Size 200 x 200 x 1

Figure 11 shows the training and validation accuracy and also
shows training and validation loss in CNN model graph at the
size 200 x 200 x 1.

) CNN model accuracy at size 250 x 250 x 1 [B) CNN model loss at size 250 x 250 x 1

Figure 12: Cnn Model Graphs at the Size 250 x 250 x 1

Figure 12 shows the training and validation accuracy and also
shows training and validation loss in CNN model graph at the
size 250 x 250 x 1.
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The graphs for all CNN sequential models are displayed in Fig.
10 through 15, showcasing the accuracy and loss of each model.
These models were trained using varying numbers of epochs
and different image sizes. The graphs illustrate the training and
validation accuracy, as well as the training and validation loss,
with image sizes set at 50 x 50 x 1, 150 x 150 x 1, 200 x 200
x 1, and 250 x 250 x 1 pixels. Various numbers of epochs and
batch sizes are depicted, revealing the corresponding training
accuracies and validation accuracies as detailed in Table 5.

/\/ \\-/ /_\\ A /‘T‘
Vi
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Ni

NI
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o TNV

\
A) VGG-16 model accuracy at size | B)VGG-16 model loss at size 224x224
224x224 x1 x 1

Figure 13: Vgg-16 Model Graphs at the Size 224 x 224 x |

NSNS

WA

B) VGG-19 model loss at size 224x224
x 1

A) VGG-19 model accuracy at size
224x224 x 1

Figure 14: VGG-19 Model Graphs at the Size 224 x 224 x |

<<<<<<<<<<<<<

B) ResNet-50 model loss at size
224x224 % 1

A) ResNet-50 model accuracy at size 224224
x 1

Figure 15: ResNet-50 Model Graphs at the Size 224 x 224 x 1

N\ A A
\WAARN
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A) Inception V3 model accuracy at size 224x224 | B) Inception V3 model loss at size
x1 224x224 % |

Figure 16: Inception V3 Model Graphs at the Size 224 x 224 x |

From figure 13-16 show the training and testing accuracies and
training, validation by using VGG-16 , VGG-19- inception V3
and ResNet50. These graphs depict the training and testing
accuracy, as well as the training and validation loss, with the
input size of images set at 224 x 224 x 1 pixels. They illustrate
various numbers of epochs and batch sizes, showcasing the
varying training accuracies and testing accuracies detailed in the
accompanying table.

Validation of Models

The models are validated using the cross-validation method.
Among different types of crossvalidation methods, the Shuffle-
split-cross (SSC) validation method is particularly flexible. In
this research, this method is utilized to validate the models,
wherein data is split into multiple training and test sets. For
this purpose, the shuffle-split function is imported from the
sklearn model-selection library. This type of cross-validation
offers several advantages, including the ability to control data as
needed. The number of iterations can be controlled independently
of training and test sizes, allowing the same part of the data to
be used in each iteration by adjusting the train-size and test-size
settings, which do not necessarily add up to one. However, these

flexibilities prove useful when experimenting with large datasets.
After validating the models, improvements in performance are
necessary. This is achieved through parameter tuning, a crucial
yet challenging task. To find the optimal parameter values for
the models, grid search is one of the best methods. Grid search
systematically explores all possible combinations of parameters,
automatically selecting the most accurate combination to
assess performance validity and comparison with other models.
For this purpose, GridSearchCV is imported from the sklearn
model-selection library. Hyperparameters, which are parameters
provided to machine learning programs, play a crucial role.
In CNN algorithms, “batch-size” and “epochs” are used as
hyperparameters. The best combination is determined through
the grid search method.

Confusion Matrix

The confusion matrix is a graphical representation commonly
used in the field of neural networks for validating models. It
provides a clear statistical analysis of the data, particularly in
binary classification tasks, such as detecting caries or non-caries
data, which is our focus. This matrix serves as a visual tool to
understand the differences between true positive, true negative,
false positive, and false negative outcomes. True Positive
indicates teeth truly infected by dental caries, while True
Negative represents samples correctly classified as non-infected,
or healthy teeth. False Positive refers to samples incorrectly
labeled as caries-infected when they are actually healthy, while
False Negative occurs when the model misclassifies healthy teeth
as infected. In our case, the confusion matrix for our test data is
visually represented in Figure. 17, providing a comprehensive
overview of the model’s performance.

-70
o - 79 60
50
40
30
- 79
20
10
'
0 1

Predicted infected and non-infected teeth

Actual infected and non-infected teeth

Figure 17: Confusion Matrix

ROC - Curve

The Receiver Operating Characteristic curve (ROC) is essentially
a graphical representation that illustrates the performance
of a model. Typically, in neural network models tasked with
classifying images into binary or multiple classes, the results
yield both real values and predicted values. These values serve as
the basis for determining thresholds for the images. Researchers
can utilize these thresholds to identify the maximum threshold
value, aiming to achieve the highest possible accuracy.

This curve always utilizes two parameters: the actual label and
the predicted label, also known as the True Positive Rate and
False Positive Rate. Therefore, the ROC curve graph for the
dental caries data is provided below in Figure 18.
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ROC Curve for Caries Detection

Figure 18: ROC Curve for Caries Detection

Discussion

The CNN model and transfer learning models employed
for detecting dental caries demonstrate significant accuracy.
Transfer learning exhibits superior accuracy compared to the
CNN sequential model. The results of these models are validated
through Shuffle Split-Cross validation, and hyper-parameter
tuning is conducted via grid research. The studies conducted by
Lee et al. [3] and Shreyansh et al. [17] are closely related to our
work. Therefore, the contributions of our study are compared in
Table 6 that highlights the novelty of our research.

Table 6: Comparison Of the Contributions of this and Related Studies

Contribution by J.-H. Lee et.

Contributions by Shreyansh

*  GoogleLeNet Inception V3
*  GoogleLeNet ResNet50

Features Contribution by this study al. [3] et. al. [17]
Title Enhancing Dental Caries Identification Detection and diagnosis of Classification of Dental
with Deep Learning: A Study of dental caries using a deep Diseases Using CNN and
Convolution Neural Networks and learning-based Transfer Learning
Transfer Learning Approaches Applying convolutional neural network
Image Processing algorithm
Data set image preprocessing through algorithms. image preprocessing manually | Not done
preprocessing (Heading 2.1 and 2.2 of [3])
Steps on 1. Cleaning 1. Cleaning Data labelling only (not
images 2. Augmentation of the whole data 2. Augmentation only on mentioned how)
preprocessing | 3. Editing, training data,
4. Feature extraction 3. Dataset splitting,
5. Segmentation 4. Model training and testing
6. Splitting 5.  Model evaluation
7. Training
8. Testing
9. Validation
Data Data augmentation performed Data augmentation performed | Not done
Augmentation | ¢ on whole data *  on training data only
* using 7 filters * using 6 filters
Image editing | Algorithms were applied for image editing | Not done Not done
to enhance the quality of image
* Increase/decrease brightness
* Increase/decrease sharpness
*  Setting contrasts
Feature The models employed for detecting dental | Learning features through Not done
Extraction caries automatically extracted features. network layers (not clearly
mentioned)
Image Images segmentation was performed by Not performed Not performed
segmentation | Random Walker Method that provided
and labelling | labeling:
»  Caries teeth
*  Non caries teeth
Model Five models were trained and tested to Single model was used (Deep |+ CNN
training and obtain the results: CNN based GoogleLeNet *  VGG-16
testing *  Sequential CNN model, Inception V3)
+  VGG-16,
+  VGG-19,
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Results To validate the accuracy of the obtained No comparison was done Not done

validation by | results, the five models were compared.

comparison

Data Two approaches were used: Single approach was used: Not done

validation *  Receiver Operating Characteristics « ROC

Curve (ROC)
*  Confusion matrix

Data The evaluation was performed on the The evaluation was performed | Not done

evaluation following criteria: on the following criteria:

criteria e Accuracy e Accuracy
»  Sensitivity *  Sensitivity
*  Specificity »  Specificity
+ FI + FI

+  MCC

Results The five models showed accuracy: 82 % for premolar and molar 88%

*  CNN:90%

*  VGG-16: 96%

*  VGG-19: 73%

* Inception V3: 70%
*  ResNet50: 73%

Conclusion Transfer learning, especially with VGG- More improved deep-learning | Transfer learning with VGG16
16, achieved the highest accuracy (96%) in | algorithms and high-quality pretrained model is used to
this study, outperforming both traditional | and quantity datasets may achieve better accuracy.
CNN and related studies, highlighting its | be useful for dental caries
effectiveness for dental caries detection. detection and diagnosis in

clinical dental practice.
Limitations comprising stages such as creation, configuration, training, and

The study identifies several key limitations thatneed improvement
for better and more accurate results. Firstly, the dataset size is
notably small, which may not suffice for the convolutional neural
network’s requirements. Secondly, downscaled images are used
as inputs to mitigate increased computational costs, training
time, and storage space. Thirdly, while deep learning-based CNN
methods demonstrate high accuracy and discriminatory power
with high-resolution, large-scale images, this study’s utilization
of downscaled images may limit its potential. Fourthly, dental
radiography presents challenges; grayscale images contain both
light and dark regions, where distinguishing between various
regions and shadow areas can be difficult due to improper camera
placement. Lastly, the type of X-ray image poses challenges,
particularly periapical X-rays, which capture images from
crown to root and often exhibit ambiguous boundaries between
bone and teeth. Additionally, teeth in periapical images may be
diversely rotated, rendering image processing more challenging.

Experimental Setup

This section discusses the experimental setup used for
implementing the proposed models. It covers details about the
tools, hardware, and environment utilized. The tool employed for
executing both the CNN model and transfer learning models is
Python, with the environment being Google Colab. Python version
3.0 is utilized, with the Keras library used on the TensorFlow
backend. TensorFlow is a free and open-source software library
for dataflow, primarily used for machine learning applications like
neural networks. Its import is essential as it serves as the backend
for the implementation setup. Keras, on the other hand, is an
open-source neural network library written in Python. It provides
a straightforward workflow for training and evaluating models,

evaluation of the model. For implementation, the sequential model
is imported from ‘keras.models()’, while layers such as Conv2D,
MaxPooling2D, Sequential, Activation, Dropout, Flatten, Dense,
Input, Lambda, Flatten, etc., are imported from ‘keras.layers()’.
Additionally, for creating the model, the Image Data Generator is
imported from ‘keras.preprocessing.image()’.

Other libraries like NumPy, which adds support for large, multi-
dimensional arrays and matrices, along with a vast collection
of high-level mathematical functions to operate on these arrays,
and Pandas, a software library for data manipulation and
analysis in the Python programming language, are also imported.
Additionally, Matplotlib, a plotting library for Python, and its
numerical mathematics extension NumPy, as well as Scikit-
learn (Sklearn), a machine learning library written in Python, are
imported. For the implementation of transfer learning models,
additional packages are required for execution. One such
package, VGG16, is imported from ‘keras.application. vggl16()’.
For image preprocessing, the ‘preprocess input’ function is
also imported from ‘keras.application. vggl6()’. Similarly,
VGG19(), ResNet(), and InceptionV3() are imported for VGG19,
ResNet50, and InceptionV3 respectively. Regarding hardware
specifications needed for the implementation, a laptop with the
following configuration is required: an operating system (32-bit,
x64-based processor), Intel® Core™ CPU (Intel® Core™ i3-
3340 processor), CPU clocked at 2.70 GHz, Intel® integrated
graphics, and 4.00GB of RAM.

Conclusion
Dental caries is among the most prevalent oral diseases across
all age groups, underscoring the importance of early and

J Stoma Dent Res, 2025

www.oaskpublishers.com

Page: 10 of 12



Copyright © Fayga Mannan, et al.

Volume 3 | Issue 4

accurate detection. The primary objective of this study is to
diagnose early and proximal caries from periapical radiographs,
employing CNN and transfer learning algorithms. The research
is structured into several key stages: data augmentation, image
preprocessing, segmentation, feature extraction, model training,
and validation. Both CNN and transfer learning models are
utilized for the detection of dental caries from periapical
radiographs, leveraging a publicly available dataset comprising
only 120 x-ray images. Transfer learning with VGG16 achieves
the highest accuracy among all the models explored, reaching
96%. The experimental results of these models are discussed in
detail in the results section, with validation conducted through
shuffle-split-cross validation.

The results of this study demonstrate that transfer learning,
particularly with the VGG-16 model, achieved the highest
accuracy (96%) for dental caries detection, outperforming both
the standard CNN (90%) and other pretrained models such as
VGG-19, Inception V3, and ResNet50. Compared to related
studies, which reported accuracies of 82% [3] and 88% [17],
the VGG-16 model in this study shows a notable improvement.
These findings suggest that well-selected transfer learning
architectures, especially VGG-16, can significantly enhance
performance in dental caries detection. Future work may further
benefit from incorporating larger and more diverse datasets, as
highlighted in previous studies
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