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ABSTRACT
Background: Dental caries is a prevalent oral health issue, and early diagnosis using X-ray images can significantly improve treatment 
outcomes. Deep learning techniques have been increasingly employed for automated detection of dental caries in radiographic images.

Objectives: This study aims to evaluate the effectiveness of deep learning models, including Convolutional Neural Networks (CNNs) and 
transfer learning approaches, in identifying dental caries using periapical radiographs.

Methods: We utilized a traditional CNN model along with transfer learning models, including Visual Geometry Group (VGG16, VGG19), 
ResNet50, and Inception V3. The CNN model consisted of three sets of 2D convolutional layers followed by activation, max-pooling, 
flatten, dense layers, dropout, and final activation layers. For the transfer learning models, the top convolutional layers were frozen to prevent 
retraining, allowing only the last layers to be trained. Hyperparameters were optimized using a grid search approach, and model performance 
was validated using the Shuffle-Split-Cross (SSC) validation method.

Results: Ten images were generated for each original image, resulting in a total of 1,150 training dataset images. The accuracy achieved by 
the CNN, VGG16, VGG19, ResNet50, and Inception V3 models was 90%, 96%, 73%, 70%, and 73%, respectively. Among these, VGG16 
exhibited the highest accuracy.

Conclusions: The findings demonstrate that transfer learning, particularly with VGG16, is highly effective in diagnosing dental caries from 
periapical radiographs. These results highlight the potential of deep learning models for improving automated dental diagnostics. Transfer 
learning, especially with VGG-16, achieved the highest accuracy (96%) in this study, outperforming both traditional CNN and related studies, 
highlighting its effectiveness for dental caries detection.
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Introduction 
Dental caries is caused by pathogenic bacteria. Pathogenic 
bacteria cause dental caries by attacking the dentin of the 
teeth and initiating their destruction. The primary pathogens 
responsible for dental caries include Villanelle, Aggregatibacter, 
Leptotrichia, Bacteroides, Granulicatella, Streptococcus, and 
Prevotella. Approximately 80% to 90% of the global population 
is affected by dental caries [1]. According to the World Health 

Organization (WHO), individuals residing in industrialized 
regions are more prone to dental caries due to unhealthy 
lifestyles, including increased sugar consumption and high 
fluoride exposure [2]. Radiography is considered one of the most 
effective methods for detecting all types of caries, particularly 
hidden ones [3].

Dental caries are curable if diagnosed at an early stage. In modern 
dentistry, early detection and recognition of caries initiation 
is a major concern [4]. Both traditional and convolutional 
approaches have been explored for the detection of dental caries 
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[5]. Among non-invasive techniques, the Quantitative Light-
Induced Fluorescence-Digital (QLF-D) method is considered 
one of the most effective for detecting caries [6].

Despite ongoing advancements, detection and treatment methods 
have not shown significant improvements over the past few 
decades, primarily due to the complex morphological anatomy 
of teeth. While existing techniques are effective for detecting 
advanced or moderate caries, they often fail to identify caries 
at early stages [7]. These methods struggle with detecting deep 
fissures, tight interproximal contacts, and secondary lesions on 
teeth.

If not detected early, caries can spread beyond the affected tooth 
to neighboring teeth [8,9]. Evidence shows that individuals 
in underdeveloped countries, particularly those with low to 
middle incomes and limited education, are most affected by 
dental caries. The high cost of treatment makes dental care 
inaccessible for many, leading to a surge in oral health problems 
and potentially contributing to systemic diseases such as 
cardiovascular disorders, cancer, chronic respiratory diseases, 
and diabetes [10]. These challenges highlight the urgent need 
for an affordable, automated algorithmic system capable of 
detecting all types of caries at early stages, thereby minimizing 
dependence on extensive human expertise.

A human tooth primarily consists of three tissues: enamel, 
dentin, and pulp. Bacterial pathogens can attack any of these 
layers, resulting in enamel caries, dentinal caries, or pulpal 
caries, respectively [11]. Affected teeth often appear spongy, 
rough, decayed, broken, and may show discoloration. Various 
image processing techniques have been applied for dental 
caries detection, typically followed by machine learning or 
deep learning models [12]. These techniques generally involve 
steps such as preprocessing, localization, data splitting, model 
training, and classification [13]. However, accurate early-stage 
detection of dental caries remains a significant challenge. Recent 
studies have demonstrated that deep learning algorithms can 
achieve outstanding performance in the medical domain [14].

This study contributes by employing CNN and transfer learning 
models—specifically VGG-16 and VGG-19—for the detection 
of dental caries using periodic radiographs. To the best of our 
knowledge, these models have not been previously applied to 
this problem in the existing literature. The traditional CNN 
architecture used comprises three sets of 2D convolutional 
layers, activation layers, max-pooling layers, a flattening layer, 
dense layers, activation layers, dropout, and final output layers. 
In the VGG models, the top convolutional layers are frozen to 
preserve learned features, while only the final layers are retrained 
to generate the desired output.

Literature Review 
Deep learning models are employed for preprocessing, 
segmentation, feature extraction, detection, and classification 
tasks. Lee and colleagues utilized deep convolutional neural 
network models to detect and diagnose dental caries using 
periapical radiography images. The GoogleNet Inception 
V3 (GNIV3) was used for data preprocessing [15]. Another 
study noted that dental images obtained through Computed 
Tomography (CT) have a limited range of properties such as 

sensitivity and geometric values. To address these challenges, 
the researchers found deep convolutional neural networks to be 
highly beneficial, particularly for resolution enhancement. They 
specifically highlighted two CNN models, U-Net and the Sub-
Pixel network, in their work for enhancing image resolution. The 
proposed models exhibited significantly improved performance 
for CT images, aiding in the enhanced detection of medical 
attributes such as shape and size [16]. 

The study proposed an automated system that performs 
segmentation of dental images based on pixel values [17]. 
Furthermore, the researchers utilized a deep convolutional 
neural network for segmenting and labeling the affected areas 
of the teeth, such as those impacted by gingival issues. They 
employed a 3D tooth model as input, utilizing a CNN model 
with a two-level hierarchy. First, the teeth were labeled, and 
then the extracted features were fed into the neural network 
model. The approach by Cantu et al, achieved a remarkable 99% 
accuracy [18]. 

The literature indicates that deep learning models are widely 
utilized for the classification and detection of caries-infected 
teeth. Numerous researchers have proposed various models in 
different forms for classification purposes. Fully convolutional 
neural networks have been employed for estimating the 
probabilities of caries. One study proposed a model based on 
CNN called ‘Automated Dental Red Autofluorescence Plaque 
Image Classification’ for classifying QLF images. The study by 
A. Betul and Oktay demonstrated the use of a CNN model for 
the classification of tooth and non-tooth areas by employing 
tooth proposals [19]. Another article by Naam et al focused on 
the automated assessment of lower third molar development from 
panoramic radiographs using a pilot technique. Machine Learning 
(ML) algorithms were utilized to train the dataset, with deep 
convolutional neural networks employed for classification [20].
 
Moreover, a machine learning approach was employed for the 
classification of healthy gums versus unhealthy gums. The 
study utilized a database of 251 Radiovisiography (RVG) dental 
images, containing images related to three oral diseases: caries, 
periapical infection, and periodontitis. The research team utilized 
both a CNN model and VGG16 model for disease classification, 
achieving 73% accuracy with the CNN model and 88% accuracy 
with VGG16 [21]. Additionally, a Computer-Aided Diagnosis 
(CAD) system was proposed for the detection of dental 
caries, utilizing a bitewing radiographs database consisting 
of 3000 images. This system was based on a Fully Connected 
Convolutional Neural Network (FCNN) containing over 100 
layers. The model effectively classified infected and non-infected 
teeth [22]. In another study, K. Moutselos et al, panoramic 
X-ray images were used and classified into incisors, molars, and 
premolars using a CNN model, specifically a modified version 
of AlexNet [23]. In situations such as major disasters like bomb 
blasts where identification becomes incredibly challenging due 
to the loss of many lives, dental forensic identification tests are 
crucial. However, labeling a large dataset during such disasters is 
considered highly complicated for general dentists. Deep CNN-
based models have proven to be invaluable in these scenarios, 
as they are utilized for the detection and classification of teeth. 
The study employed AlexNet for the classification of identified 
teeth [23]. 
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This model achieved an accuracy of 77.4%. Deep learning models 
prove to be very beneficial for comparative studies. For instance, 
CNN models are utilized to classify periapical teeth based on 
their condition after treatment into three classes: ‘getting better,’ 
‘getting worse,’ or ‘no change,’ achieving a 74% F1 score [24]. 
In another study, the machine learning algorithm Support Vector 
Machine (SVM) was used to classify caries-infected and non-
infected teeth using a panoramic image database for identifying 
proximal dental caries. This model achieved an accuracy of 
81% [25]. A Neural Network was employed for the detection of 
dental caries using a database of periapical radiographs. They 
utilized an Adaptive Neural Network for this purpose, achieving 
an impressive 94% accuracy [25]. Machine learning models 
are divided into two categories: supervised learning models 
and unsupervised learning models. Unsupervised learning 
techniques are employed for the detection of dental caries 
through nonstandardized X-ray images [26]. CNN techniques 
are also used to differentiate between various treated teeth, such 
as cavity fillings, implants, and root canal-treated teeth [27]. In 
another study, the validity of CNN techniques was evaluated for 
diagnosing dental caries in different types of teeth, including 
proximal caries lesions on bitewing radiographs. [28]. 

Table 1: Performance in Term of Accuracy Comparison of 
the Detection of Dental Caries Techniques Mentioned in the 
Relevant Papers. 

 Reference Accuracy Reference Accuracy
[2] 51% [19] 94%
[3] 81% [20] 81%
[7] 74% [21] 71%
[8] 82% [23] 88.46%
[9] 83% [24] 84%
[13] 95% [25] 61%
[14] 95% [26] 90%
[15] 84% [27] 74%
[17] 74% [28] 81%
[18] 99% [29] 96%

Table 1 presents a performance comparison of dental caries 
detection techniques along with their respective accuracies. CNN 
demonstrates exceptional performance in the fields of computer 
vision and image processing. CNN models offer solutions to the 
aforementioned challenges. They possess the learning ability to 
acquire features. There are several reasons for employing CNN 
models: 
•	 CNN serves as an excellent feature extractor, autonomously 

learning features deeply from images. 
•	 It has the capability to exploit spatial and temporal 

correlation data. 
•	 CNN can learn feature representations specific to a dataset; 

for example, it can identify hidden features that may be 
overlooked by dentists, such as proximal caries. 

•	 CNN models automatically discover all deep or hidden 
features from large datasets, eliminating the need for expert 
intervention in image processing. 

Table 2: Techniques Mentioned by Relevant Papers for 
Detection of Dental Caries 
Author Technique(s) Authors Technique

[2] F-CNN [20] CNN

[3] Google Net Inception 
V3 [21] CNN

[4] U-net [22] ML

[5] Adaptive Neural 
Network (ADA) [23] VGG-16

[6] VGG16 CNN [24] CNN
[7] Alex Net [25] F-CNN

[8] Mask-RCNN [26] Modified 
Alex Net

[12]

Squeeze Net, 
MobileNet-v2, Google 
Net, ResNet-18 and 
ResNet-50

[27]

CNN model

[15] Google Net Inception 
V3 [28] SVM

[17] ML [29] VGG19-CNN

Table 2 presents a performance comparison of dental caries 
detection techniques, where CNN not only demonstrates good 
performance in the field of dental caries but also in other domains. 
In dentistry, caries is detected through periapical and panoramic 
radiographs, as well as bitewing radiographs. Ocular caries is 
easily detected, but deep learning models yield impressive 
results in diagnosing proximal caries [29]. Deep learning models 
such as ANN, DNN, RNN, and CNN are also utilized in various 
medical fields, including the diagnosis of brain tumors, lung 
cancer, eye infections, digital pathology, chest and abdominal 
issues, musculoskeletal disorders, and dermatological diseases, 
among others. Deep Neural Networks (DNN) represent a class 
of deep learning models, employed for detecting and classifying 
Alzheimer’s disease, as well as for segmenting brain tissues. 
Additionally, various ophthalmic diseases are diagnosed using 
deep learning models [30]. A simple CNN model is employed for 
diagnosing Color Fundus Imaging (CFI), which finds application 
in numerous ophthalmic disease-related tasks such as anatomical 
structure segmentation, detection of retinal abnormalities, eye 
disease diagnosis, and assessment of image quality [31]. CNN is 
such type of neural network [32, 33] that is a powerful tool [34] 
implemented by many researchers for feature extractions [35]. 
 
Proposed Work 
This study utilized convolutional neural network models and 
transfer learning models for diagnosing dental caries from 
periapical radiographs. The primary research steps included 
image acquisition, data augmentation, image preprocessing, and 
training and validating the models using the cross-validation 
method. 

Image Acquisition 
The process of gathering data is known as image acquisition. 
The database of dental periapical images was collected in 2013 
and published in 2016. This dataset was obtained from the 
University Technology Malaysia (UTM) Health Center’s dental 
clinic. The images were captured during regular checkups of 
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university students at the clinic. The age group of the students 
ranged between 25 and 35 years old. Patients were informed 
about the data collection process. For this study, periapical 
dental X-ray images were utilized. These dental X-ray data were 
collected using a specialized X-ray machine. An intraoral X-ray 
machine, directly linked to a digital scanner and software known 
as “SIDEX XG,” was used to produce digital periodic dental 
radiographs. The details of the dataset have been mentioned in 
Table 3. The hardware and software utilized in the study are from 
a German company named Sirona. The dataset specifications 

include 120 images in JPEG format, with dimensions of 748 
× 512 pixels. There are three main types of tooth radiographs: 
panoramic, bitewing, and periapical. The dataset used in this 
research consists of periapical radiographs. Periapical X-rays 
display all the teeth within one section, either the upper or 
lower jaw. These X-rays are among the most cost-effective and 
commonly used for diagnosing and treating dental conditions, 
offering clear views of the tooth roots and surrounding bone 
structures. This dataset is also publicly available.[9] 

Table 3: Details of Dataset

Dataset Type Original Images Augmented 
Images

Total Images 
(After 

Augmentation)

Training Data 
(80%)

Testing Data 
(20%)

Dental Images 120 1030 1150 920 230

Data Cleaning 
Data cleaning is a straightforward process involving three steps: 
excluding blurred images, cropping, and flipping. All radiographs 
include dimension values on their sides. The next step involved 
flipping images to standardize all mixed images of the maxilla 
and mandibular jaw into the mandibular jaw orientation using a 
vertical flip. 

Data Augmentation 
The augmentation process was executed on the Keras framework 
using the ImageDataGenerator (IDG) function. Data was 
randomly generated with the following specifications: rotation 
range of 40 degrees, width shift range of 0.2, height shift range 
of 0.2, shear range of 0.2, zoom range of 0.2, horizontal flip set 
to true, and fill mode set to ‘nearest.’ Ten images were generated 
for each original image, resulting in a total of 1,150 training 
dataset images. Figure. 1 illustrates and describes the image 
augmentation techniques employed, including rotation, width 
shift, height shift, shear, and zoom range. 

Figure 1: Image Augmentation Using Rotation-Range, Width 
Shift & Height Shift-Range, Shear & Zoom-Range

Data Preprocessing 
After cleaning the data, image enhancement was conducted to 
improve the visibility of the images. In this study, images were 
enhanced by adjusting three factors: brightness, sharpness (as 
shown in Figure. 2b), and contrast (as shown in Figure. 2c). For 
this purpose, the ‘image enhance’ function from the PILLOW 
library was utilized. Figure. 2 illustrates and describes the 
sharpening and contrast adjustments made using the ‘image 
enhance’ function, as well as the enhancement of brightness in 
the images. 

Figure 2: Image Enhancement

Image Segmentation 
The images were segmented using a supervised segmentation 
method, employing three primary techniques: thresholding 
algorithms, the random walker method, and the active contour 
method. In thresholding algorithms, images are converted into 
pixels, and a range of pixel values is defined by the user in 
supervised data. This conversion transforms the images from 
grayscale to binary form, where grayscale images typically 
contain pixel values ranging from 0 to 255. The threshold 
method divides the image pixels into two categories: black 
and white, with pixels categorized below 150 and above 150 
separately using the ‘threshold()’ function from the OpenCV 
library, as depicted in Figure. 3b. Its invariance is also shown 
in Figure. 3c. In the active contour method, a circle or line is 
drawn around the Region of Interest (ROI), and this contour 
expands or contracts based on light and edge information. In 
our dataset, where multiple caries may be present in an image, 
we required a method that could segment all pixels from areas 
of small caries using predefined labels. The random walker 
method proved to be the most suitable for this task. The random 
walker method is particularly effective for segmenting a small 
number of pixels from images. This approach utilizes predefined 
pixels and ‘walks’ randomly to all unlabeled pixels, assigning 
appropriate labels. It is especially useful for high-quality image 
segmentation. 

Figure 3: Image Segmentation Shows the Normal Image, Binary 
Grey Threshold and Binary Grey Threshold Invariance in Image 
Segmentations.

Feature Extraction 
There are various methods for extracting features from images, 
such as using the Principal Component Analysis (PCA) 
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method. PCA is utilized for the analysis of multivariate data 
and is particularly effective for extracting linear features and 
facilitating data comparisons. This method reveals only a few 
features by compressing the original image data [reference for 
claiming of compressing image]. However, deep learning models 
including CNN Sequential Model, VGG16, VGG19, ResNet50, 
and Inception V3, are also capable of automatically extracting 
features from images. In this study, these models are employed 
for detecting dental caries automatically extracted features. In 
previous studies, the said models were used on fewer images 
[limitation].

Training Models 
This study utilized CNN Sequential Model, VGG16, VGG19, 
ResNet50, and Inception V3 models. It was discovered that these 
models had not been previously applied to the given dataset. 
Details on the utilization of these models are provided below. 

CNN Model 
As shown in Figure. 4, the input images were scaled down to 250 
× 250 × 1 to reduce computational expenses. Processing high-
dimensional images in their original dimensions would require 
significant computation. However, reducing the dimensions 
of images can sometimes result in the loss of information. 
The proposed network comprises three sets of convolutional 
layers, ReLU activation layers, and max-pooling layers. They 
are followed by a sequence of layers: flatten, dense, activation, 
dense, dense, and activation layer. This sequential model takes 
input images of size 250 × 250 × 1. Here is a summary of the 
inputs for all these layers: 
•	 Input image size: 250 × 250 × 1
•	 Conv2D input layer size 250 × 250 × 1, Activation layer 248 

× 248 × 32, Max pooling 248 × 248 × 32
•	 Conv2D input layer size 124 × 124 × 32, Activation layer 

122 × 122 × 32, Max pooling 122 × 122 × 32
•	 Conv2D input layer size 61 × 61 × 32, Activation layer 59 × 

59 × 64, Max pooling 61 × 61 × 32
•	 Flatten layer input size: 29 × 29 × 64 
•	 Dense layer with 53824 nodes, followed by an activation 

with size 64, a dropout layer of 64 nodes, another dense 
layer of 64 nodes, and an activation of size 1. 

 
The kernel size is 3 × 3, all activation functions are ReLU, and 
the final activation function is Sigmoid. Sigmoid activation is 
applied to the last dense layer. The dropout layer has a size of 0.5 
to mitigate the problem of overfitting. 

Figure 4: Architecture of CNN Model

Transfer Learning 
As shown in Figure. 5, VGG architectures are typically trained 
on ImageNet. The workings of both VGG16 and VGG19 models 
are the same; the only difference lies in their number of layers, 
with VGG19 having more layers in its structure. Firstly, in the 

implementation setup, the relevant packages must be imported. 
For VGG16 and VGG19, input images are resized, scaling them 
down to 224 × 224. The weights for the first three convolutional 
layers of VGG16 are frozen, while the subsequent layers are 
used for training. The concept of transfer learning is applied for 
fine-tuning, enabling the model to learn basic low-level features 
from the images in the dataset. These models are pre-loaded with 
ImageNet weights. 

The top convolutional layers are disabled. The weights of these 
models are set to “ImageNet,” indicating that they are pre-
trained based on ImageNet. The model type is sequential, with 
one flattening layer included without any parameters. Three 
dense layers are added with units=256 and ReLU activation 
functions in the first and second dense layers. The last dense 
layer has units=3 with a “softmax” activation function. All other 
optional layers are excluded to make the model more adaptive to 
the training data. The final dense layer with ‘softmax’ functions 
as a binary classifier, distinguishing between carious and non-
carious teeth. 

Figure 5: Architecture of Transfer Learning Models

Inception V3
Inception V3 architectures are typically pre-loaded with 
ImageNet weights. Firstly, in the implementation setup, the 
relevant packages must be imported. For Inception V3, input 
images are resized, scaling them down to 224 × 224 as shown in 
Fig. 6 [17]. The weights for the first three convolutional layers of 
Inception V3 are frozen, while the subsequent layers are used for 
training. The concept of transfer learning is employed for fine-
tuning, enabling the model to learn basic low-level features from 
the dataset images. These models are pre-loaded with ImageNet 
weights. The top convolutional layers are disabled. The weights 
of these models are set to ‘ImageNet,’ indicating that they are 
pre-trained based on ImageNet. The model type is sequential, 
with one flattening layer included without any parameters. Three 
dense layers are added with units=256 and ReLU activation 
functions in the first and second dense layers. The last dense 
layer has units=3 with a ‘softmax’ activation function. All other 
optional layers are excluded to make the model more adaptive to 
the training data. The final dense layer with ‘softmax’ functions 
as a binary classifier, distinguishing between carious and non-
carious teeth.

ResNet 50
ResNet 50 architectures are typically pre-loaded with ImageNet 
weights. Firstly, in the implementation setup, the relevant 
packages must be imported. For ResNet 50, input images are 
resized, scaling them down to 224 × 224 as shown in Figure. 7 
[17]. The weights for the first 3 convolutional layers of ResNet 
50 are frozen, while the subsequent layers are used for training. 
The concept of transfer learning is employed for fine-tuning, 
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allowing the model to learn some basic low-level features from 
the dataset images. These models are pre-loaded with ImageNet 
weights. The top convolutional layers are disabled. The weights 
of these models are set to ‘ImageNet,’ indicating that they are 
pre-trained based on ImageNet. 
 

Figure 6: Inceptionv3 model used for classification of dental 
caries and non-infected teeth.

In Figure. 7, it is shown that the model type is sequential, with 
one flatten layer included without any parameters. Additionally, 
three dense layers are added with units=256 and ReLU activation 

functions in the first and second dense layers. The last dense 
layer has units=3 with a ‘softmax’ activation function. No other 
optional layers are included. This is done to make the model 
more adaptive to the training data. The final dense layer with 
‘softmax’ functions as a binary classifier, distinguishing between 
carious and noncarious teeth.

Figure 7: Resnet 50 Model Used for Classification of Dental 
Caries and Non-Infected Teeth

The adopted methodology and flow of this study is shown by 
figure. 8

Figure 8: Methodology And Flow of This Study

Results 
All employed models efficiently classify infected teeth from 
non-infected ones. However, the transfer learning models 
show better performance than the CNN sequential model. The 
evaluation of these models is measured by evaluation metrics 
named accuracy. A summary of the models’ results is provided 
in Table 4. In the training process of the CNN sequential model, 
a total of 20 epochs are needed to converge with a trained model, 
achieving 90% accuracy. Table 3 illustrates the training process 
of VGG16, VGG19, ResNet 50, and Inception V3 models, each 
requiring a total of 5 epochs to converge with a trained model, 

achieving accuracies of 96%, 73%, 70%, and 73%, respectively. 
The VGG16 model demonstrates 6% higher accuracy than the 
CNN model. Accuracy is measured as TP+TN/TP+TN+FP+FN. 
True Positive refers to teeth that are truly infected by dental 
caries and are classified as caries-infected teeth. True Negative 
refers to samples classified as non-infected, which are truly 
healthy teeth. False Positive samples are healthy but erroneously 
classified as caries-infected teeth. False Negative indicates teeth 
classified as healthy by the model, but are actually infected by 
caries. These terms are denoted as TP=True Positive, TN=True 
Negative, FP=False Positive, and FN=False Negative. 
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Table 4: Performance Evaluation in the Term of Training 
and Validation Accuracy of Used Models

Model Training Validation
CNN 90% 70%
VGG16 96% 96%
VG19 73% 66%
Inception V3 70% 69%
ResNet50 73% 66%

TP+TN/TP+TN+FP+FN. True Positive denotes teeth truly 
infected by dental caries, also referred to as caries-infected teeth. 
True Negative refers to samples classified as non-infected, which 
are genuinely healthy teeth. False Positive represents samples 
classified as healthy but incorrectly labeled as cariesinfected 
teeth by the model. False Negative indicates teeth classified 
as healthy by the model, but in reality, they are infected by 

caries. These terms are denoted as: TP=True Positive, TN=True 
Negative, FP=False Positive, FN=False Negative. 

However, these flexibilities are valuable for experimenting 
with large datasets. After validating the models, improvements 
in their performance are necessary. This is achieved by tuning 
parameters, which is both important and quite tricky. Finding the 
optimal parameter values for models is crucial, and the process 
can be complex. For parameter tuning, grid search is one of the 
best methods because it explores all possible combinations of 
parameters. Grid search is an approach that automatically selects 
the most accurate combination of parameters to assess performance 
validity and compare with other models. To implement grid search, 
GridSearchCV is imported from the sklearn.model_selection 
library. Hyperparameters are parameters provided to machine 
learning algorithms. In CNN algorithms, ‘batch size’ and ‘epochs’ 
are used as hyperparameters. The best combination is determined 
through the grid search method, as shown in Table 5. 

Table 5: Performance Evaluation in Terms of Training, Validation Accuracy and Loss of Used Models 

Models Input Size Training 
Accuracy

Testing 
Accuracy

Training 
Loss

Validation 
Loss

Number of 
Epochs Batch Size

CNN 
sequential 
model

250 × 250 × 1 73% 53% 0.58 0.74 20 10
200 × 200 × 1 68% 58% 0.67 0.67 10 5
150 × 150 × 1 80% 58% 0.54 0.75 20 10
50 × 50 × 1 77% 55% 0.55 0.86 20 10

Transfer 
Learning 
models

250 × 250 × 1 68% 50% 0.97 0.57 10 3
250 × 250 × 1 70% 51% 0.55 0.47 14 2
224 × 224 × 1 79% 49% 0.19 0.76 15 3
224 × 224 × 1 69% 53% 0.63 0.09 10 3

The graphs below depict the accuracy and loss of all these 
models. Each model was trained using varying numbers of 
epochs and image sizes. Included are graphs for the CNN 
models and VGG models. Additionally, two other models, 
namely ResNet 50 and Inception V3, utilized a different package 
but share the same architecture as the VGG models. Accuracy 
metrics include training and validation accuracy, as well as 
training and validation loss.

Figure 9: Cnn Model Graphs at the Size 50 × 50 × 1

Figure 9 shows the training and validation accuracy and shows 
training and validation loss in CNN model graph at the size 
50×50 × 1.

Figure 10 shows the training and validation accuracy and also 
shows training and validation loss in CNN model graph at the 
size 150 ×150 × 1.

Figure 10: Cnn Model Graphs at the Size 150 × 150 × 1

Figure 11: Cnn Model Graphs at the Size 200 × 200 × 1

Figure 11 shows the training and validation accuracy and also 
shows training and validation loss in CNN model graph at the 
size 200 × 200 × 1.

Figure 12: Cnn Model Graphs at the Size 250 × 250 × 1
 
Figure 12 shows the training and validation accuracy and also 
shows training and validation loss in CNN model graph at the 
size 250 × 250 × 1. 
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The graphs for all CNN sequential models are displayed in Fig. 
10 through 15, showcasing the accuracy and loss of each model. 
These models were trained using varying numbers of epochs 
and different image sizes. The graphs illustrate the training and 
validation accuracy, as well as the training and validation loss, 
with image sizes set at 50 × 50 × 1, 150 × 150 × 1, 200 × 200 
× 1, and 250 × 250 × 1 pixels. Various numbers of epochs and 
batch sizes are depicted, revealing the corresponding training 
accuracies and validation accuracies as detailed in Table 5. 

Figure 13: Vgg-16 Model Graphs at the Size 224 × 224 × 1

Figure 14: VGG-19 Model Graphs at the Size 224 × 224 × 1

Figure 15: ResNet-50 Model Graphs at the Size 224 × 224 × 1

Figure 16: Inception V3 Model Graphs at the Size 224 × 224 × 1

From figure 13-16 show the training and testing accuracies and 
training, validation by using VGG-16 , VGG-19- inception V3 
and ResNet50. These graphs depict the training and testing 
accuracy, as well as the training and validation loss, with the 
input size of images set at 224 × 224 × 1 pixels. They illustrate 
various numbers of epochs and batch sizes, showcasing the 
varying training accuracies and testing accuracies detailed in the 
accompanying table. 

Validation of Models 
The models are validated using the cross-validation method. 
Among different types of crossvalidation methods, the Shuffle-
split-cross (SSC) validation method is particularly flexible. In 
this research, this method is utilized to validate the models, 
wherein data is split into multiple training and test sets. For 
this purpose, the shuffle-split function is imported from the 
sklearn model-selection library. This type of cross-validation 
offers several advantages, including the ability to control data as 
needed. The number of iterations can be controlled independently 
of training and test sizes, allowing the same part of the data to 
be used in each iteration by adjusting the train-size and test-size 
settings, which do not necessarily add up to one. However, these 

flexibilities prove useful when experimenting with large datasets. 
After validating the models, improvements in performance are 
necessary. This is achieved through parameter tuning, a crucial 
yet challenging task. To find the optimal parameter values for 
the models, grid search is one of the best methods. Grid search 
systematically explores all possible combinations of parameters, 
automatically selecting the most accurate combination to 
assess performance validity and comparison with other models. 
For this purpose, GridSearchCV is imported from the sklearn 
model-selection library. Hyperparameters, which are parameters 
provided to machine learning programs, play a crucial role. 
In CNN algorithms, “batch-size” and “epochs” are used as 
hyperparameters. The best combination is determined through 
the grid search method.
 
Confusion Matrix 
The confusion matrix is a graphical representation commonly 
used in the field of neural networks for validating models. It 
provides a clear statistical analysis of the data, particularly in 
binary classification tasks, such as detecting caries or non-caries 
data, which is our focus. This matrix serves as a visual tool to 
understand the differences between true positive, true negative, 
false positive, and false negative outcomes. True Positive 
indicates teeth truly infected by dental caries, while True 
Negative represents samples correctly classified as non-infected, 
or healthy teeth. False Positive refers to samples incorrectly 
labeled as caries-infected when they are actually healthy, while 
False Negative occurs when the model misclassifies healthy teeth 
as infected. In our case, the confusion matrix for our test data is 
visually represented in Figure. 17, providing a comprehensive 
overview of the model’s performance. 

Figure 17: Confusion Matrix 

ROC - Curve 
The Receiver Operating Characteristic curve (ROC) is essentially 
a graphical representation that illustrates the performance 
of a model. Typically, in neural network models tasked with 
classifying images into binary or multiple classes, the results 
yield both real values and predicted values. These values serve as 
the basis for determining thresholds for the images. Researchers 
can utilize these thresholds to identify the maximum threshold 
value, aiming to achieve the highest possible accuracy. 

This curve always utilizes two parameters: the actual label and 
the predicted label, also known as the True Positive Rate and 
False Positive Rate. Therefore, the ROC curve graph for the 
dental caries data is provided below in Figure 18.
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Figure 18: ROC Curve for Caries Detection

Discussion 
The CNN model and transfer learning models employed 
for detecting dental caries demonstrate significant accuracy. 
Transfer learning exhibits superior accuracy compared to the 
CNN sequential model. The results of these models are validated 
through Shuffle Split-Cross validation, and hyper-parameter 
tuning is conducted via grid research. The studies conducted by 
Lee et al. [3] and Shreyansh et al. [17] are closely related to our 
work. Therefore, the contributions of our study are compared in 
Table 6 that highlights the novelty of our research.

Table 6: Comparison Of the Contributions of this and Related Studies

Features Contribution by this study Contribution by J.-H. Lee et. 
al. [3]

Contributions by Shreyansh 
et. al. [17]

Title Enhancing Dental Caries Identification 
with Deep Learning: A Study of 
Convolution Neural Networks and 
Transfer Learning Approaches Applying 
Image Processing

Detection and diagnosis of 
dental caries using a deep 
learning-based
convolutional neural network 
algorithm

Classification of Dental 
Diseases Using CNN and 
Transfer Learning

Data set
preprocessing

image preprocessing through algorithms. image preprocessing manually 
(Heading 2.1 and 2.2 of [3])

Not done

Steps on 
images 
preprocessing

1.	 Cleaning
2.	 Augmentation of the whole data
3.	 Editing,
4.	 Feature extraction
5.	 Segmentation
6.	 Splitting
7.	 Training
8.	 Testing
9.	 Validation

1.	 Cleaning
2.	 Augmentation only on 

training data,
3.	 Dataset splitting,
4.	 Model training and testing
5.	 Model evaluation

Data labelling only (not 
mentioned how)

Data 
Augmentation

Data augmentation performed
•	 on whole data
•	 using 7 filters

Data augmentation performed
•	 on training data only
•	 using 6 filters

Not done

Image editing Algorithms were applied for image editing 
to enhance the quality of image
•	 Increase/decrease brightness
•	 Increase/decrease sharpness
•	 Setting contrasts

Not done Not done

Feature 
Extraction

The models employed for detecting dental 
caries automatically extracted features.

Learning features through 
network layers (not clearly 
mentioned)

Not done

Image 
segmentation 
and labelling

Images segmentation was performed by 
Random Walker Method that provided
labeling:
•	 Caries teeth
•	 Non caries teeth

Not performed Not performed

Model 
training and 
testing

Five models were trained and tested to 
obtain the results: 
•	 Sequential CNN model,
•	 VGG-16,
•	 VGG-19,
•	 GoogleLeNet Inception V3
•	 GoogleLeNet ResNet50

Single model was used (Deep 
CNN based GoogleLeNet 
Inception V3)

•	 CNN
•	 VGG-16
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Results 
validation by 
comparison

To validate the accuracy of the obtained 
results, the five models were compared.

No comparison was done Not done

Data 
validation

Two approaches were used:
•	 Receiver Operating Characteristics 

Curve (ROC)
•	 Confusion matrix

Single approach was used:
•	 ROC

Not done

Data 
evaluation 
criteria

The evaluation was performed on the 
following criteria:
•	 Accuracy
•	 Sensitivity
•	 Specificity
•	 F1

The evaluation was performed 
on the following criteria:
•	 Accuracy
•	 Sensitivity
•	 Specificity
•	 F1
•	 MCC

Not done

Results The five models showed accuracy:
•	 CNN: 90%
•	 VGG-16: 96%
•	 VGG-19: 73%
•	 Inception V3: 70%
•	 ResNet50: 73%

82 % for premolar and molar 88%

Conclusion Transfer learning, especially with VGG-
16, achieved the highest accuracy (96%) in 
this study, outperforming both traditional 
CNN and related studies, highlighting its 
effectiveness for dental caries detection.

More improved deep-learning 
algorithms and high-quality 
and quantity datasets may 
be useful for dental caries 
detection and diagnosis in 
clinical dental practice.

Transfer learning with VGG16 
pretrained model is used to 
achieve better accuracy.

Limitations 
The study identifies several key limitations that need improvement 
for better and more accurate results. Firstly, the dataset size is 
notably small, which may not suffice for the convolutional neural 
network’s requirements. Secondly, downscaled images are used 
as inputs to mitigate increased computational costs, training 
time, and storage space. Thirdly, while deep learning-based CNN 
methods demonstrate high accuracy and discriminatory power 
with high-resolution, large-scale images, this study’s utilization 
of downscaled images may limit its potential. Fourthly, dental 
radiography presents challenges; grayscale images contain both 
light and dark regions, where distinguishing between various 
regions and shadow areas can be difficult due to improper camera 
placement. Lastly, the type of X-ray image poses challenges, 
particularly periapical X-rays, which capture images from 
crown to root and often exhibit ambiguous boundaries between 
bone and teeth. Additionally, teeth in periapical images may be 
diversely rotated, rendering image processing more challenging. 

Experimental Setup 
This section discusses the experimental setup used for 
implementing the proposed models. It covers details about the 
tools, hardware, and environment utilized. The tool employed for 
executing both the CNN model and transfer learning models is 
Python, with the environment being Google Colab. Python version 
3.0 is utilized, with the Keras library used on the TensorFlow 
backend. TensorFlow is a free and open-source software library 
for dataflow, primarily used for machine learning applications like 
neural networks. Its import is essential as it serves as the backend 
for the implementation setup. Keras, on the other hand, is an 
open-source neural network library written in Python. It provides 
a straightforward workflow for training and evaluating models, 

comprising stages such as creation, configuration, training, and 
evaluation of the model. For implementation, the sequential model 
is imported from ‘keras.models()’, while layers such as Conv2D, 
MaxPooling2D, Sequential, Activation, Dropout, Flatten, Dense, 
Input, Lambda, Flatten, etc., are imported from ‘keras.layers()’. 
Additionally, for creating the model, the Image Data Generator is 
imported from ‘keras.preprocessing.image()’. 

Other libraries like NumPy, which adds support for large, multi-
dimensional arrays and matrices, along with a vast collection 
of high-level mathematical functions to operate on these arrays, 
and Pandas, a software library for data manipulation and 
analysis in the Python programming language, are also imported. 
Additionally, Matplotlib, a plotting library for Python, and its 
numerical mathematics extension NumPy, as well as Scikit-
learn (Sklearn), a machine learning library written in Python, are 
imported. For the implementation of transfer learning models, 
additional packages are required for execution. One such 
package, VGG16, is imported from ‘keras.application. vgg16()’. 
For image preprocessing, the ‘preprocess_input’ function is 
also imported from ‘keras.application. vgg16()’. Similarly, 
VGG19(), ResNet(), and InceptionV3() are imported for VGG19, 
ResNet50, and InceptionV3 respectively. Regarding hardware 
specifications needed for the implementation, a laptop with the 
following configuration is required: an operating system (32-bit, 
x64-based processor), Intel® Core™ CPU (Intel® Core™ i3-
3340 processor), CPU clocked at 2.70 GHz, Intel® integrated 
graphics, and 4.00GB of RAM. 

Conclusion 
Dental caries is among the most prevalent oral diseases across 
all age groups, underscoring the importance of early and 
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accurate detection. The primary objective of this study is to 
diagnose early and proximal caries from periapical radiographs, 
employing CNN and transfer learning algorithms. The research 
is structured into several key stages: data augmentation, image 
preprocessing, segmentation, feature extraction, model training, 
and validation. Both CNN and transfer learning models are 
utilized for the detection of dental caries from periapical 
radiographs, leveraging a publicly available dataset comprising 
only 120 x-ray images. Transfer learning with VGG16 achieves 
the highest accuracy among all the models explored, reaching 
96%. The experimental results of these models are discussed in 
detail in the results section, with validation conducted through 
shuffle-split-cross validation. 

The results of this study demonstrate that transfer learning, 
particularly with the VGG-16 model, achieved the highest 
accuracy (96%) for dental caries detection, outperforming both 
the standard CNN (90%) and other pretrained models such as 
VGG-19, Inception V3, and ResNet50. Compared to related 
studies, which reported accuracies of 82% [3] and 88% [17], 
the VGG-16 model in this study shows a notable improvement. 
These findings suggest that well-selected transfer learning 
architectures, especially VGG-16, can significantly enhance 
performance in dental caries detection. Future work may further 
benefit from incorporating larger and more diverse datasets, as 
highlighted in previous studies
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