

Engineering The Perfect Strike: Lightweight Fiber-Reinforced Concrete for the ACI Bowling Ball Challenge

Laura Desire Ortega-Juárez¹, Samantha Reyes-Rodriguez¹, Andres A Torres-Acosta¹ and Celene Arista-Perrusquía²

¹Tecnológico de Monterrey, School of Engineering and Science, Mexico

²Instituto Tecnológico de Estudios Superiores de Monterrey (ITESM), School of Engineering and Science, Mexico

*Corresponding author

Samantha Reyes-Rodriguez, Tecnológico de Monterrey, School of Engineering and Science, Mexico.

Received: November 20, 2025; **Accepted:** December 01, 2025; **Published:** December 07, 2025

Introduction

The ACI Bowling Ball Challenge invites civil engineering students to design a concrete bowling ball that meets strict criteria for weight, size, and mechanical strength. This competition encourages innovative mix designs and the use of sustainable materials, making it a platform to explore the potential of lightweight and fiber-reinforced concretes in a practical, hands-on context.

Objective

To design a sustainable, lightweight, fiber-reinforced concrete using recycled expanded perlite (polystyrene) and local arenilla (a lightweight aggregate) for the fabrication of a bowling ball that meets ACI Challenge specifications ($\varnothing 20 \pm 0.5$ cm, $\leq 5.25 \pm 0.5$ kg). The design aims to minimize environmental impact by incorporating local and recycled materials.

Methods

Material Characterization

Unit weight was measured (loose and compacted). Sand gradation followed ASTM C33.

		Compacted	10,455	1040. 298
Arenilla	Fine	Loose	-	721. 32
Tezonlte	Fine	Loose	-	1200

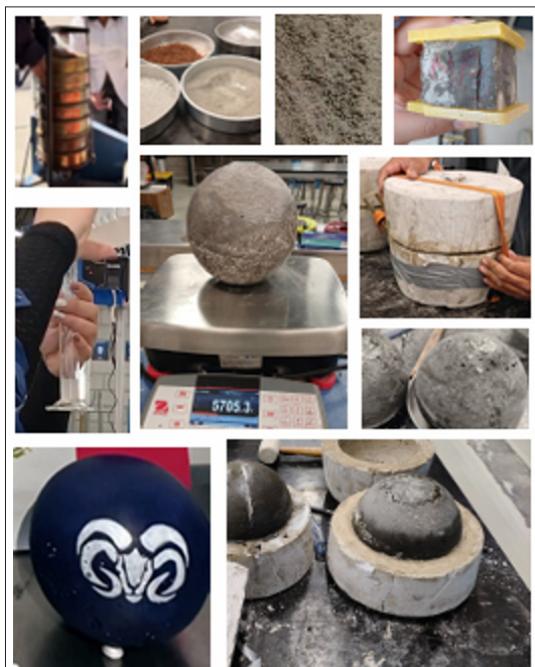
ASTM C-33 Sands					
Sieve	% Passing		Intermediate Value	% Cumulative retained	% Retained
3/8"	100	100	0	25	
#4	95	100	975	25	75
#8	80	100	90	10	225
#16	50	85	675	325	25
#30	25	60	425	575	25
#50	5	30	175	825	125
#100	0	10	5	95	5

Mix Design

Mixes with different proportions of aggregates, fibers, expanded perlite (polystyrene) and additives were prepared

Testing and Final Casting Cubes

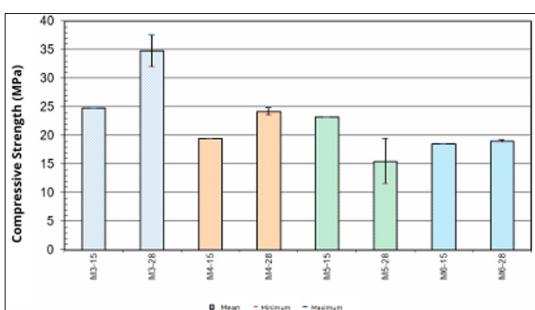
($5 \times 5 \times 5$ cm) were cast and cured in water.

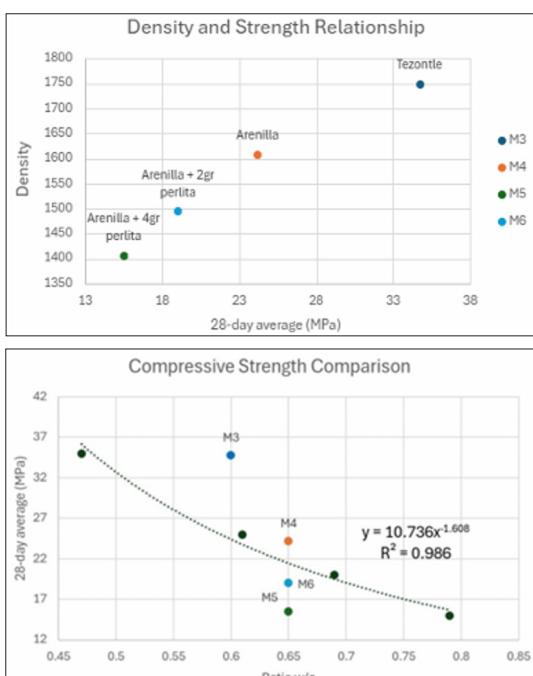

Compressive strength was tested at 15 and 28 days.

Final prototype was made in 20 cm plaster molds, chosen for reusability and ease of demolding.

Unit weight test				
	Aggregate	Condition	Weight (kg)	Density (kg/m ³)
Holcim	Coarse	Loose	6,685	665,174
		Compacted	7,635	759,701
	Fine	Loose	911	906,467

Citation: Laura Desire Ortega-Juárez, Samantha Reyes-Rodriguez, Andres A Torres-Acosta, Celene Arista-Perrusquía. Engineering The Perfect Strike: Lightweight Fiber-Reinforced Concrete for the ACI Bowling Ball Challenge. J Envi Sci Agri Res. 2025. 3(6): 1-3. DOI: doi.org/10.61440/JESAR.2025.v3.113


Mix	Type of cement	Cement (kg)	Coarse aggregate (kg)	Sand (kg)	Water (L)	Fiber (g)	Expanded perlite (g)	Silica fume (g)	Admixt ure (ml)	Ratio w/c	Unit mass (kg/m³)
1	Alumino so	55	Tezonotle 1.65	277	25	50	40	385	95	45	147,909
2	CPC 40	55	Tezonotle 1.65	277	236	50	40	385	93	43	1674
3	CPC 40	11	Tezonotle 0.33	553	66	10	—	77	11	6	1749
4	CPC 40	11	Arenilla #4 – 0.33	553	712	10	—	77	14	65	1608
5	CPC 40	11	Arenilla #4 – 0.33	553	712	10	4	77	12	65	1406
6	CPC 40	11	Arenilla #4 – 0.33	553	712	10	2	77	12	65	149,352


Results

- Arenilla reduced unit weight up to 19.6%.
- All mixes included synthetic fibers to improve fracture toughness

Mix	15-day strength (MPa)	28-day average (MPa)	Ratio w/c	Unit mass (kg/m³)
3	2,474	34,755	6	1749
4	1,948	2,419	65	1608
5	2,322	15,495	65	1406
6	1,849	19,025	65	149,352

Analyses

Conclusions

- Tezonotle produced the highest strength (34.75 MPa), but also the highest density (1749 kg/m³). Mixes with arenilla were lighter and reached up to 24.19 MPa.
- Perlite reduced density but lowered strength. Strength was influenced more by aggregate type than by the w/c ratio; a mix with w/c = 0.60 and tezonotle exceeded the expected strength typically associated with w/c = 0.61 according to ACI standards.
- The optimal mix must balance weight, strength, and workability. Using local and recycled materials is a viable and sustainable strategy for lightweight concrete.

Acknowledgment

We acknowledge the company Element5 Applied Chemistry for supplying the materials used to manufacture the bowling balls and cubic specimens to evaluate material performance prior to the ACI competition. We also thank the Civil Engineering Laboratory at Tecnológico de Monterrey, Querétaro Campus, for providing the equipment and tools needed to produce the specimens. The economical support of CH Arquitectura y Construcción (Research Grant 2102_030_EIC) for the poster presentation is also acknowledged.

References

1. ASTM International. ASTM C33/C33M-18: Standard Specification for Concrete Aggregates. 2018
2. American Concrete Institute. ACI 211.1-91: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. 2012.