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ABSTRACT
The accurate estimation of biomass carbon in forests is of paramount importance for effective forest management and mitigating climate change. This study 
presents a novel approach to produce a high-resolution map of biomass carbon over forests in Malaysia using the Aboveground Carbon Density Indicator 
(ACDI) and a comprehensive collection of 12 years of inventory data, i.e., from 2011 to 2023. The ACDI was derived based on several vegetation indices 
(VIs) that were produced from the original Landsat images to indicate the level of aboveground biomass carbon (AGC) stock in the forested areas. The 
ACDI was then integrated with ground-based measurements and became a single indicator for estimating AGC. This calculation was conducted on Google 
Earth Engine (GEE) platform to match the date of field observation with the satellite imagery datasets. Latest dates of Landsat imagery were used to produce 
a forest cover map throughout the country, which comprised three major forest types, which are dry inland forest, mangrove forest, and peat swamp forest. 
Results indicated significant spatial variations in AGC across Malaysia’s forests. Based on the estimates, a 30-metre resolution, wall-to-wall map of AGC 
across the entire forested region of Malaysia has been created. The total AGC in all types of forests in Malaysia was estimated at 3.0 billion Mg C with 
an attainable accuracy of about 80%. The presented methodology showcases the value of combining advanced remote sensing techniques with long-term 
inventory data, which contributes to the understanding of carbon dynamics in Malaysian forests and promotes effective strategies for mitigating climate 
change through better-informed forest conservation and management practices.

Keywords: Aboveground Carbon Stock, Tropical Forest, 
Landsat, Malaysia Ecosystem, Spectral Indices

Introduction
Malaysia is considered one of the highest forest carbon countries 
in the world due to its significant forested areas and the carbon-
rich nature of its forests. Several factors contribute to Malaysia’s 
status as a country with substantial forest carbon, that include: 
home to vast tropical rainforests, high plant diversity, has 
extensive peat swamp forests and extensive mangrove ecosystems 
along its coastlines. While Malaysia’s forests are rich in carbon, 
they have faced deforestation, habitat loss, and land-use changes 
[1]. Malaysia has implemented various conservation measures 

and forest management practices to protect its forests and their 
carbon stocks [2]. This includes establishing protected areas and 
national parks.

Malaysia has made commitments under international agreements 
like the United Nations Framework Convention on Climate 
Change (UNFCCC) to reduce emissions from deforestation 
and forest degradation (REDD+) [3]. Malaysia has also been 
involved in carbon offset projects, where the country can earn 
carbon credits by reducing deforestation and forest degradation, 
as well as implementing rehabilitation, reforestation, and 
afforestation initiatives.
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In addition to being an essential part of forest ecosystems, forest 
biomass is also important for mitigating climate change, storing 
carbon, and preserving biodiversity [4]. Accurate assessment 
and forecast of forest biomass are essential for understanding 
the effects of climate change, managing forests, and accounting 
for carbon emissions. Remote sensing technologies, like satellite 
data from Landsat have revolutionised the prediction of forest 
biomass by providing crucial insights into the characteristics of 
forests and changes in land cover [5].

Landsat satellites, launched by the National Aeronautics and 
Space Administration (NASA) and the U.S. Geological Survey, 
have been providing high-resolution and multispectral imagery 
of the Earth’s surface since 1972 [6]. Landsat data have been 
widely employed for various environmental and land use 
applications due to their long-term data archive, consistent data 
quality, and global coverage [7]. Landsat satellites capture data 
in different spectral bands, allowing researchers to analyse land 
cover, vegetation, and biomass across diverse landscapes. The 
entire historical Landsat archive has been opening for public 
access since 2008 [8]. As such, the Landsat archive has become 
one of the most valuable and cost-effective remotely sensed 
data sources supporting worldwide land/forest research and 
monitoring activities.

Among the advantages of using Landsat for biomass estimations 
are (i) large coverage from specific landscapes, regional to global 
scales, (ii) temporal and spatial scales; provide the advantage 
of temporal consistency, allowing for long-term biomass 
change monitoring in specific time-series, and (iii) sensitivity 
to environmental changes, which Landsat data can capture 
changes in forest biomass due to factors like disturbances (e.g., 
forest fires and logging) and climate-related stressors [9]. This 
sensitivity enables better understanding of the impacts of these 
changes on forest ecosystems.

Although Landsat data is a valuable resource for monitoring and 
estimating forest biomass, it has some challenges when it comes 
to biomass estimation in tropical regions, especially Malaysia 
[10]. One of the main challenges is that optical sensors are 
sensitive to the amount of light reflected by the vegetation, which 
is influenced by the structure and density of the forest canopy. 
However, the relationship between the amount of light reflected 
and the biomass is not straightforward, as it can be affected by 
factors such as the species composition, age, and health of the 
trees [11]. Moreover, clouds and atmospheric conditions can 
interfere with the accuracy of optical data acquisition, which can 
lead to incomplete or inconsistent data [12]. Another important 
limiting factor to direct biomass carbon modelling lies in the 
lack of repeated and coincident field reference data at different 
times [13].

Several attempts have been placed to overcome these limitations 
and the approaches taken can be categorised into two, which 
are (i) diversifying uses of spectral and vegetation indices and 
(ii) applying machine learning and statistical models [14,15]. 
These indices are used as predictor variables to estimate forest 
biomass, indirectly. Machine learning techniques, including 
Random Forest, Support Vector Machines (SVM), artificial 
neural network (ANN), and regression models, have been 
combined with Landsat data to predict forest biomass [16-18]. 

These models use spectral information, vegetation indices, and 
other environmental variables to establish relationships between 
the data and biomass estimates [19]. These techniques have 
demonstrated their efficiency in predicting forest biomass at 
various scales, from local to regional. Another popular solution 
is to combine Landsat-based data with datasets from other 
sensors, both optical and synthetic aperture radar (SAR) and 
even integrate with light detection and ranging (LiDAR)-based 
data [19-25]. Eventually, each approach offers different levels of 
difficulties and challenges [14].

This study aimed at producing reliable AGC estimates at national 
scale, pixel-based, wall-to-wall at acceptable spatial resolution 
produced from a single satellite with consistent observations that 
is able to represent the forest types and physical conditions of the 
forests over time. To achieve this, the following objectives are 
drawn; (i) to derive the Aboveground Carbon Density Indicator 
(ACDI) using the Google Earth Engine (GEE) platform, (ii) 
to produce AGC estimation models from the ACDI, and (iii) 
to map the AGC at 30-m pixel resolution for the entire forests 
across Malaysia.

Materials and Methods
The Study Area
Malaysia is a country in Southeast Asia, located just north of 
the Equator. It is composed of two non-contiguous regions: 
Peninsular Malaysia and East Malaysia (Figure 1). The country 
has a total area of about 330,803 km². Malaysia currently 
has about 18 million ha of forests [26]. Major forest types 
in Malaysia are lowland dipterocarp forest, hill dipterocarp 
forest, upper hill dipterocarp forest, oak-laurel forest, montane 
ericaceous forest, peat swamp forest and mangrove forest. 
In addition, there are also smaller areas of freshwater swamp 
forest, Melaleuca swamp forest, heath forest, transitional forest, 
forest on limestone and forest on quartz ridges. These are lies on 
lands that have various topographic features that elevate from 
the coastal floodplains up to 2187 m a.s.l of Tahan Mount in 
Peninsular Malysia and the majestic Kinabalu Mount in Sabah, 
with 4095 m a.s.l. Considering the composition of these forests 
in Malaysia, the types can be generalised into three types, which 
are dry inland, peat swamp and mangrove forests.

Timber production is also one of the commodities in Malaysia 
where State Governments are depending greatly on the forest 
resources for generating and sustaining the economy [27]. 
Malaysia is practising sustainable forest management (SFM) 
to balance timber production with conservation efforts. This 
approach aims to maintain forest carbon stocks while allowing 
for responsible logging. Harvesting only for merchantable 
timbers at certain controlled cutting limits. There are also 
forest plantations, established with certain timber tree species, 
developed to support timber supplies and meet the industrial 
demands.

Methodology
The framework of methodology was developed based on 
six major pillars, which are (i) collection of field datasets at 
sample plots, (ii) derivation of ACDI, (iii) development of AGC 
estimation models, (iv) production of seamless mosaic images, 
(v) forest delineation and forest types classification, and (vi) 
map production. Previously, there was no study that produce a 
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spatial information on forest biomass carbon at a country level. 
This study was designed in a way to produce a framework that 
integrate inventory data with Landsat images covering various 
types and conditions of forests. The first step was to match the 
field data collection date with the derived ACDI from the Landsat 
images. Google Earth Engine was used to execute this calculation 
and identify trends in data to create the ACDI. the derived ACDI 
was then correlated with the inventoried AGC. Clean images 
are crucial to produce a wall-to-wall map of AGC; therefore, a 
seamless mosaic of the Landsat images was produced. Steps ii 
and iv above were performed on the GEE platform, while the 
remaining processes were conducted separately by using image 
processing and GIS software, i.e., ERDAS Imagine®, Exelis 
ENVI Software, and Esri’s ArcGIS Desktop. Overall framework 
of the methodology is illustrated in Figure 2 and the detailed 
processes involved are described as follow. 

Figure 1: Map showing location of Malaysia on the World Map.

Figure 2: Flowchart of the methodology adopted in the study.

Collection of Field Inventory Data
Sampling work has been started since 2011 at several locations 
focused on lowland and hill dipterocarp forests in Peninsular 
Malaysia [28]. The work was carried out occasionally depending 
on available research projects that have been undergoing since 
then until year 2023, covering all forest types in Malaysia (Table 
1 and Table 11 in Appendix B). The applied forest inventory 

design was stratified random, where sampling plots were 
distributed according to the forest types and covering all stands 
conditions of the forests (i.e., virgin forest, totally protected 
areas, logged forests, secondary forest, and degraded areas). 
This was considered to ensure all variations of biomass carbon 
are captured in the samples. Locations of the sample plots are 
depicted in Figure 3.

Table 1: Summary of the total number of sample plots.
Forest type No. of sample plots Total

Data used for 
modelling 

Data used for 
validation

Dry inland forest 2,970 350 3,320
Peat swamp forest 1,125 75 1,200
Mangrove forest 1,750 50 1,800
Total 5,845 475 6,320

Figure 3: Distribution of sampling points on the classified forest 
types map.

Modified sampling design was applied in this study, following the 
standard operating procedure (SOP) that has been developed by 
Winrock International which complies to the Intergovernmental 
Panel on Climate Change (IPCC) protocols [29,30]. The design 
was then customised to suit forest conditions and management 
practices in Malaysia [31,32]. The sampling designs are divided 
into three, which are corresponding to dry inland forest, peat 
swamp forest and mangrove forest. The design of the sampling 
plots was done in clusters, where random samples were chosen 
after the population is split up into groups according to the types 
of forests and strata. Cluster sampling is a probability sampling 
method used when the population is large and geographically 
dispersed.

Estimation of biomass carbon was based on the published 
allometric equations found in the literature, suitable to the 
corresponding types of forests in Malaysia. Aboveground 
biomass (AGB) of the measured trees in the sample plots 
was first estimated before the values were converted to AGC. 
The estimation of AGB that was calculated at tree-level was 
converted to the plot-level, where the measurement is reported in 
Megagram (Mg) per hectare, Mg ha-1. This estimation was then 
converted into a biomass carbon unit of AGC by multiplying 
the AGB with 0.47, which is the constant carbon fraction and 
reported in Mg C ha-1 [30].

Dry Inland Forest
A cluster comprises four sampling plots and the distance between 
plots is 100 m as shown in Figure 16 in Appendix A. The plot 
was designed in a circular shape with smaller nests inside. The 
biggest nest measures 20 m in radius, followed by the smaller 
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nests measuring 12 m and 4 m (Figure 19 in Appendix A). The 
sizes of trees are measured according to the nest sizes, which is 
summarised in Table 10 in Appendix A. Depending on the nest 
size, it indicates that not all trees are measured in a single plot. 
In addition to these nests, there is another small nest measuring 
2 m in radius, which is used to count the saplings. The clustering 
of multiple plots at one sampling unit allows field crews to 
sample a larger area per sampling point. The sampling system 
is designed in such a way to make the data collection processes 
easier, faster, reliable and representative for a forest stratum. 
The distance of the trees is controlled by using a Distance 
Measurement Equipment (DME) that utilises sonar waves to 
communicate with a transponder that is installed at centre of the 
plot. Therefore, in reality the nests with particular radius do not 
exist on the ground.

The estimation of AGB on dry inland forest was calculated based 
on an allometric equation that was developed for the dry inland 
forest [33]. The allometric equation is expressed as follow;

AGB = exp[-1.803-0.976E+0.976 ln (ρ)+2.673 ln (D)  -0.0299[ln 
(D)]2 ]						                   (1)

where AGB denotes the estimated biomass of a tree (kg tree-1), D is 
diameter at breast height (dbh) of each tree (cm), ρ is wood specific 
gravity or wood density (typical average value for all Southeast 
Asia’s tree species is 0.57 g cm-3) and E is bioclimatic variable, 
which is available at http://chave.upstlse.fr/pantropicalallometry.
htm [34].

Peat Swamp Forest
Peat swamp forests are terrestrial wetland ecosystems with low 
nutrient levels and highly acidic soil (pH less than 4.0) [35]. 
Ecologically, peat swamp forests have organic soil horizons, 
or peat that can receive water and nutrients exclusively from 
flooding and groundwater or from rainfall. In the tropics, peat 
formation is influenced by high rainfall rates, minimal drainage, 
and high temperatures with little seasonal change. According 
to peat swamp forests are typically submerged during the rainy 
season, which encourages anaerobic conditions that influence 
the rates and pathways of decomposition and accumulation 
[36]. Peat soils are described as having at least 50 centimetres 
of thickness and a content of organic matter greater than 65% 
in tropical ecosystems. The layout of sampling plots for peat 
swamp forest is depicted in Figure 16 and Figure 19 in Appendix 
A [37]. The sizes of trees are measured according to the nest 
sizes, which is summarised in Table 10 in Appendix A. The 
allometric equation for the estimation of AGB in peat swamp 
forest is expressed as

AGB = 0.136D2.51 				                (2)

Mangrove Forest
Mangroves are defined as an association of halophytic trees, 
shrubs and other plants growing in brackish to saline tidal 
waters of tropical and subtropical coastlines [38]. Mangroves 
are generally restricted to the tidal zone. As such, mangroves in 
fringe areas will be inundated by practically all high tides, while 
those at the higher topographic boundaries may be flooded only 
during the highest of tides (spring tides) or during storm surges. 

Mangroves are typically found along tropical and subtropical 
coastlines between about 25° N and 25° S.

Mangrove forest has its own habitat, which is unique in terms of 
ecology, standing structure and species composition. Therefore, 
the sampling method for mangrove forest is designed specifically 
for the mangroves. The sampling can be organised in a cluster, 
comprising 6 plots (Figure 18 in Appendix A). The layout of 
sampling plots for the mangrove forest is depicted in Figure 19 
in Appendix A [39]. The sizes of trees were measured according 
to the nest sizes, which is summarised in Table 10 in Appendix 
A. The allometric equation adopted for the calculation of AGB 
in mangrove forest is expressed as

AGB = 0.251ρD2.46 				                (3)

where ρ is wood specific gravity or wood density (average value 
for all mangroves tree species is 0.752 g cm-3).

Production of Seamless Mosaics, Cloud-Free Images Over 
Malaysia
The production of cloud-free images over Malaysia was done 
using GEE. In this study, a Top-of-Atmosphere’s (ToA) cloud-
free mosaic image for Malaysia in the year 2023 was generated 
using Landsat 8 and Landsat 9 satellite imagery obtained from 
the “LANDSAT/LC08/C02/T1_TOA” and “LANDSAT/LC09/
C02/ T1_TOA” collections. The use of data that were acquired 
between 2022 and 2023 is to maximise the chance of getting 
clear images with less cloud covers. A cloud masking approach 
was applied to the selected images using the “QA_PIXEL” band. 
This band was used to mask pixels containing dilated clouds, 
cirrus clouds, and cloud shadows. This cloud masking process 
was crucial for excluding cloudy or obscured pixels, resulting 
in a cleaner and more accurate composite image. The composite 
image was generated using the median value for each pixel 
across the selected cloud-masked images. The median composite 
method was chosen because it is simple for calculation and its 
robustness against outliers and its ability to reduce the influence 
of noise and artifacts in the final image. Finally, the cloud-
free mosaic image over Malaysia of year 2023 was created by 
mosaicking the individual median composite images.

Forest Cover and Types Classifications
Forest is defined as “a portion of land larger than 0.5 ha and 
has trees with a height of more than five metres and has a tree 
canopy cover of more than 10 percent or with trees that can 
meet these criteria”. This definition is based on the UN Food 
and Agriculture Organization’s (FAO), which is adopted by the 
Malaysian government Laws of Malaysia - National Forestry 
Act 1984 (Amended, 2006). However, there are different types 
of forests in Malaysia, such as inland mixed dipterocarp forest, 
peat swamp forest, and mangrove forest, which have different 
characteristics and functions. Therefore, the definition of a 
forest may vary depending on the context and the purpose of the 
classification. Inland mixed dipterocarp forest, which is divided 
into several layers according to the land elevations, i.e., lowland 
dipterocarp forest (< 300 m), hill dipterocarp forest (300 - 750 
m), upper-hill dipterocarp forest (750 - 1200 m), oak-laurel 
forest (1200 – 1500 m), montane ericaceous forest (>1500 m), 
are dominant in Malaysia [40].
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All dryland forests are included in this category. It includes all 
primary and secondary forests that meet the defined threshold. It 
would, thus, also include the dwarf Montane and Sub-Montane 
forests growing on the thin soils of mountain summits and ridges 
of the interior of the peninsula. The dry inland forest in Malaysia 
is mostly dominated by trees from the Dipterocarpaceae family, 
hence the term ‘dipterocarp’ forests. The dipterocarp forest 
occurs on dry land just above sea level to an altitude of about 
900 m. The dipterocarp specifically refers to the fact that most of 
the largest trees in this forest belong to one plant family known 
as Dipterocarpaceae. It was so called because their fruits have 
seeds with two wings (di = two; ptero = wing; carp = seed) [41].

The peat swamp forest resides on peatlands behind the mangrove 
forest, where less salty soils are present. On the other hand, 
mangrove forest normally exists near to the coastal and estuarine 
areas where the forest is influenced by tidal waves. Tidal forest 
where the genera Rhizophora, Bruguiera and Avicennia are most 
common. Smaller sections of casuarina/beach forest, freshwater 
swamp forest, melaleuca swamp forest, heath forest, limestone 
forest, and quartz ridge forest are also present. In Sabah, there is 
another type of vegetation zone, known as sub-alpine vegetation, 
which occurs only at the elevation of > 3500 m a.s.l., at the peak 
of Kinabalu Mount [31].

Image classification was executed on the mosaic images to 
delineate these forest types. To ensure that the classification is 
done correctly, spatial information such as Permanent Reserve 
Forest (PRF) boundaries, management regimes, and locations 
of various ecosystems are necessary. The training areas were 
manually created based on this ancillary information aided by the 
sampling plots information. In this case, the image classification 
was performed to delineate forests from other land features. 
Maximum likelihood image classification algorithm was utilised 
to execute the classification.

The most difficult aspect of image classification was dealing with 
large amounts of data and producing classification results with 
minimum uncertainty [42]. Pixel format classification results 
have been converted to shapefile vector format (.shp) for further 
analysis and post-classification recognition processes. Further 
editing and refining were conducted manually over the shapefile 
to ensure that the classification results are clean and only cover 
the forested areas.

Development of ACDI
The ACDI is a metric developed on the premise that there exists 
a direct correlation between the density of a forest’s canopy, 
or the amount of foliage and branches in its upper layers, and 
the quantity of carbon stored in the forest’s biomass. This 
relationship is rooted in the principle that a denser canopy 
typically implies a more extensive and carbon-rich vegetation 
structure. The ACDI is used to estimate the amount of carbon 
stored in a forest, which is important for evaluating forest carbon 
sink capacities. As such, the ACDI will serve as a valuable tool 
for estimating the amount of carbon sequestered in a forest 
ecosystem by analysing its AGC. The development of ACDI 
is based on the Forest Canopy Density (FCD) model that was 
established by and modified by [43-45]. 

The FCD model used SI, advanced vegetation index (AVI), 
Bare-soil Index (BI) and Thermal Index (TI). An inspection was 
conducted on this model and found that ambiguities exist at the 
grassland and the shrublands, especially burn scars areas where 
the FCD is found to have higher values than that of forested areas 
[46]. This effect needs to be eliminated and the only solution to 
this is by suppressing the values to a level that is representative 
to the actual physical condition on the ground. Therefore, the 
other indices were incorporated into the equation which each 
index is able represent the real conditions of forests and the 
ACDI is thus developed, which can be expressed as

10 2NDVI NBR SI
SAVI MNDWI SWIR EVIACDI × ×

× × × × = ×  	             (4)

where each image variable is summarised in Table 2. All indices 
were calculation based on Top of Atmosphere (ToA) reflectance 
values.

The vegetation indices used in the ACDI were chosen with 
care to highlight the forest areas, distinguish them from other 
features, and show variations under different circumstances. The 
Normalised Difference Vegetation Index (NDVI) is a widely-
used metric for quantifying the health and density of vegetation 
using sensor data. The Shadow Index (SI) is used to derive 
information about various landscape phenomena, including 
vegetation health and land classifications. However, the specific 
purpose or application of the Shadow Index is for detecting 
and correcting for shadows in optical satellite imagery. On the 
other hand, the Normalised Burn Ratio (NBR) is a radiometric 
measure of burn severity that was originally developed using 
Landsat Thematic Mapper data. The NBR is a widely used index 
for monitoring environmental changes, particularly those related 
to fire intensity and burn severity.

The SAVI is a vegetation index that is designed to minimise 
the influence of soil brightness on the vegetation signal. It is 
particularly useful in areas where vegetative cover is low. In 
contrast, the IO can be used to estimate the presence of iron oxide 
in various landscapes, such as wetlands. The ratio presented 
in IO is also used as a geological index used for identifying 
rock features that have experienced oxidation of iron-bearing 
sulphides. However, in this case the IO was included in the 
equation to differentiate forest cover especially in wetlands areas 
[47]. On the other hand, the MNDWI is a spectral index used for 
several purposes, such as enhancement of open water features 
that is particularly useful in built-up areas as it can reduce or 
even remove built-up land. It is also used to analyse water 
bodies such as rivers, lakes, and dams. In this case, the MNDWI 
was included to diminish built-up area features that are often 
correlated with open water in other indices. Finally, EVI was 
included in the equation as one of the multiplicative indicators 
in the denominator. This “optimised” vegetation index aims 
to improve vegetation monitoring by decoupling the canopy 
background signal and minimising atmospheric impacts, hence 
increasing the vegetation signal’s sensitivity in high biomass 
regions. It thus enhanced the vegetation health and density of 
vegetation.

The ACDI equation was then applied to the Landsat-8 Operational 
Land Imaging (OLI) for the year 2023. This process is similar 
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to the production of a seamless mosaic of Landsat images over 
Malaysia as described earlier. However, an additional step was 
applied to include the ACDI formula to the image. This process 
was also conducted on the GEE platform.

Table 2: Image variables that were used to develop ACDI.
Image 

variable Full name Formula Reference

NDVI Normalised 
Difference 
Vegetation Index 

[(NIR – R)/ 
(NIR + R)] [48]

NBR Normalised Burn 
Ratio

[(NIR – SWIR)/ 
(NIR + SWIR)] [49]

SI Shadow Index [(1 – B) (1 – G) 
(1 – R)]1/3 [50]

SAVI Soil-Adjusted 
Vegetation Index

[(NIR – R)/
(NIR+R+L)] 
*[1+L]

[51]

IO Iron Oxide Index R/B [52]
MNDWI Modified 

Normalised 
Difference Water 
Index

[(G – SWIR)/ 
(G + SWIR)] [53]

EVI Enhanced 
Vegetation Index 

GF× [(NIR – 
R)/ (NIR + C1 × 
R – C2 × B + L)

[54]

B = blue wavelength channel, G = green wavelength channel, 
R = red wavelength channel, NIR = near infrared wavelength 
channel, SWIR = short wave infrared wavelength channel, 
GF = Gain Factor, L = the canopy background adjustment that 
addresses non-linear, differential NIR and red radiant transfer 
through a canopy. The coefficients adopted are: L=1, C1 = 6, C2 
= 7.5, and GF = 2.5.

Development of Agc Estimation Models
The linear relationship between AGC and the ACDI is a 
fundamental connection in the assessment of carbon content in 
terrestrial ecosystems. AGC represents the total carbon stored 
in the aboveground biomass of trees. ACDI, on the other hand, 
is a metric used to express this carbon content relative to a unit 
of area, typically per hectare or square metre. The extraction 
process was conducted on the GEE platform where a specific 
program code was created to extract the ACDI values from 
Landsat data that match the date (or year) of the field inventory 
data. This is to ensure that the value of AGC is true at the specific 
time, because the forest can change over time.
 
The linear relationship between AGC and ACDI is 
straightforward: as the aboveground carbon content increases 
in a given area, the ACDI value for that area also increases 
proportionally. Simple linear regression is a statistical method 
used to estimate the relationship between two quantitative 
variables. It is preferred over other regression models to measure 
the strength of the relationship between AGC and ACDI. Simple 
linear regression is also preferred when only one independent 
variable, (i.e., ACDI) is available. In addition to the simple linear 
regression, logarithmic regression (also known as log-linear 
regression) regression was also applied to model the relationship 

between AGC and ACDI using logarithmic transformations. 
In this case ACDI is the predictor for AGC, where the linear 
relationship between these two variables can be expressed as 

y = mx				                                                                             (5)
y = m.log(x)			                                                                       (6)

where y denotes AGC, x is the ACDI, and m is the equation’s 
coefficient. Both x and y variables intercept at 0, which means 
that the line passes through the origin (0, 0) of the plane, where 
ACDI is 0 when AGC is 0 or no vegetation (cleared land and 
water bodies).

Models’ Validation
Some of the sample plots data were used separately for validation 
(Table 1). The validation plots are those measurements that 
have been conducted recently in the year 2023 to match the 
AGC map that was produced for the year 2023. To check the 
accuracy of the estimates, root mean square error (RMSE) was 
calculated. In this case, the accuracy is a measure of the error 
between a derived/predicted AGC from the ACDI and the actual 
AGC measured on the ground. RMSE is a useful metric and 
commonly used for comparing the fit of different regression 
models. It is calculated as the square root of the variance of the 
residuals, which are the differences between the observed data 
values and the predicted values from the model. The calculation 
can be expressed as follows:

2( )p rAGC AGC
nRMSE −= ∑ 			               (7)

where RMSE is the root mean square error of the estimated AGC 
(± Mg C ha−1), AGCp and AGCr are the predicted and reference 
AGC, respectively, and n is the sample size (i.e., number of 
validation plots).

In additional to the RMSE, the accuracies of the estimates were 
also measured in terms symmetric mean absolute percentage 
error (SMAPE). SMAPE is a commonly used metric for 
measuring the percentage accuracy between forecasted and 
actual values. It is particularly used to assess the performance 
of a forecasting model, and it has a preference for symmetrical 
errors. The adjusted SMAPE values typically range from 0% to 
100% [55]. A lower SMAPE indicates a better forecast accuracy, 
while a higher SMAPE indicates a less accurate forecast. 
SMAPE is calculated as follows:

1

| |
| | | |

100 p r

pR

n

n

AGC AGC
AGC AGCnSMAPE

=

−
+= ∑ 		              (8)

Thematic Map Production
The empirical equations that have been derived from the 
regression analysis were applied to the ACDI images by using 
ERDAS Imagine® Model Maker tools. Each equation was 
applied to produce estimated AGC according to the forest types. 
Since the model produced was made according to the type of 
forest, the processes were repeated for three times, each for dry 
inland forest, peat swamp forest, and mangrove forest. Each 
resulting AGC image was then cropped to match the forest 
type. Then the three images were recomposed to produce a 
single image containing the AGC value according to the type 
of forest. The mosaiced product was a single-layer image with 
pixel values representing AGC, producing a wall-to-wall map 
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of AGC throughout Malaysia at 30-m resolution. By using this 
map, AGC at any location can be determined and statistics of 
AGC within any polygon can be extracted.

Maps Comparison
Forest biomass carbon map that has been produced from this 
study was also compared with the products that have been 
produced previously by Baccini and Hensen [56,57]. These maps 
were produced from different data sources, mainly from Landsat 
imageries in years 2011-2012. To match the dates between these 
maps and the products of this study, another layer of AGC map 
was produced for the year 2012, by using the prediction models 
derived from this study. These datasets were stacked together 
and pixel-to-pixel comparison was made based on AGC values 
on these maps. 

Results and Discussion
Summary of the Sample Plots Data
The field inventory work that has been conducted covered a wide 
range of forest types and conditions, from severely degraded 
areas to the highly pristine, virgin forest. Non-tree spots within 
the sampling areas, with AGC value of 0 were also included as 
samples. Statistics of the AGC that were measured at sample 
plots are summarised in boxplots as shown in Figure 4.

Figure 4: Boxplots summarising the sample plots data.

Seamless Mosaics, Cloud-Free Images Over Malaysia
A seamless mosaic, cloud-free images of Landsat images over 
Malaysia has been produced as shown in Figure 5. A 2-year 
threshold (i.e., 2022-2023) was found the most optimal for the 
production of cloudless images containing clear pixels of more 
than 99%. The median composite method that was chosen to 
produce this product was found as the most appropriate technique 
to produce quality data. Each pixel represents the “typical” 
appearance of the area over the time period. This technique was 
found useful for reducing noise and removing clouds or other 
atmospheric disturbances that are present in individual images 
[58]. 

The Classified Forest Cover and Types
From the classification, it was found that the total area of forests 
in Malaysia in 2023 was about 18 million ha with dry inland forest 
being dominant at 93.3% (Table 3). The classification accuracy 
was assessed by using the most recent sampling plot data and 
compared with the classified pixels in a confusion matrix. The 
resulted accuracy was reported as user’s and producer’s accuracy 
at 92.3 % and 89.6%, respectively. The forest types classification 
results were produced in shapefile (.shp) format so that further 
analysis and statistical extractions can be carried out over the 
AGC map. Figure 6 shows the map of forest types that have been 
classified from the image.

Table 3: Extents of forests in Malaysia produced from image 
classification (2023).
Forest type Extent (ha) Percentage (%)
Dry inland forest 16,859,417 93.3
Mangrove forest 547,564 3.0
Peat swamp forest 655,422 3.6
Total 18,062,403 100.0

Figure 5: Seamless mosaic, cloud-free images of Landsat over 
Malaysia of year 2023.

Figure 6: Map showing forest cover and types over Malaysia, 
produced form the image classification.

Figure 7: Map showing spatial distribution of ACDI over 
Malaysia, derived from the Landsat mosaic images.

Summary of the ACDI
The ACDI that have been derived from the Landsat images for 
the year 2023 ranged from about 0 to 200. However, the values 
are mainly concentrated at values ranging from 0 to 50 (Figure 8) 
and minor pixels containing values exceeding 100. The statistic 
of ACDI is summarised in Table 4 and the spatial distribution 
of ACDI is presented on the map in Figure 7. The histogram 
represents all terrestrial features in Malaysia, which includes 
all categories of land use/cover. While water bodies, bare lands 
and built-up areas have relatively low ACDI values, vegetation 
covers tend to have higher values. In this case, all vegetation 
including forests and agricultural lands are mixed and some of 
them are sharing the same values of ACDI. Therefore, the forest 
cover and types classification are crucial and took the primary 
part in the processes.

Table 4: Basic statistics of ACDI values over Malaysia for 
the year 2023.

Min Max Mean Median Mode Std. Dev.
0.00 198.18 25.34 22.46 19.36 14.77
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Figure 8: Histogram of ACDI distribution over Malaysia.
AGC Estimation Models

Scatterplots of AGC against ACDI have been produced with linear 
correlations created for all forest types. Referring to the scatterplot 
it is obvious that the ACDI demonstrated different responses 
towards the AGC. The slope of the linear regression line, which 
is steeper than that of peat swamp and mangrove forest, indicates 
that the dry inland forests exhibit a larger proportional relationship 
between ACDI and AGC. Mangrove forests, on the other hand, 
have the least gradient. This is because wetlands (i.e., peat swamps 
and mangrove forests) and dry inland forest have different soil 
properties [59]. The ACDI formula has normalised the impact on 
soil properties. In contrast, peat swamps and mangrove forests 
appear darker due to the reflectance in the infrared region that has 
been absorbed by the moisture as it interacts with the wetlands 
[60]. Mineral soil beneath dry inland forest tends to become 
brighter because the amount of reflectance mainly comes from the 
canopy of the trees [61].  The derived AGC estimation models 
are summarised in Tables 5 and the scatterplots of correlations 
between AGC and ACDI are depicted in Figure 9.

Logarithmic transformations regression performed almost 
similar to the simple linear regression. However, the prediction 
model was better for inland forest. In contrast, the models 
showed lower performance in mangrove forest as compared 
to the simple linear regression. This reflects the complexity 
different forest types and hence the behaviour is unpredicted in 
a nonlinear form. Furthermore, the developed ACDI has taken 
this variability into consideration by normalizing the unevenness 
that occur within each forest type by using various vegetation 
indices. The derived AGC estimation models from logarithmic 
transformations are summarised in Tables 6.

It is desirable and expected that the AGC has a perfect linear 
relationship with ACDI. However, after the analysis was carried 
out, it was found that the relationship is still divergent and this 
happens due to several factors. The first factor is the coordinates 
of the location of the sampling plot which is not very accurate and 
the position of the plot which does not fall exactly on the actual 
pixel locations. Another factor is the use of allometric equations 
that do not relate forest canopy information in AGC calculations, 
whereas the information extracted from satellite data is based on 
the forest canopies. In addition, the spatial resolution of Landsat 
data at 30-m accuracy includes many mixed features in a pixel 
when compared to the plot sizes used in the census, especially 
for peat swamp and mangrove forests where the plot sizes are 
smaller than the pixel resolution. Nonetheless, the correlations 
exhibit significance, with r2 values surpassing 0.5, and are 
deemed acceptable, given the huge amount of field data available 
to reveal the true relationship between AGC and the ACDI. 

Table 5: Summary of AGC estimation models derived from the regression analysis.
Forest Type Empirical Equation* Number of samples (n) Correlation Coefficient (r2) Adjusted r2

Overall forest types AGC = 2.1187*ACDI 5,845 0.4897 0.4898
Dry inland forest AGC = 3.3763*ACDI 2,970 0.6275 0.6276
Peat swamp forest AGC = 2.3133*ACDI 1,125 0.5787 0.5791
Mangrove Forest AGC = 1.0815*ACDI 1,750 0.6230 0.6232

*All correlations are significant at probability value, p < 0.05.

Table 6: Summary of AGC estimation models derived from the logarithmic transformations function.
Forest Type Empirical Equation* Number of samples (n) Correlation Coefficient (r2) Adjusted r2

Overall forest types AGC = 26.1995*log (ACDI) 5,845 0.629 0.631
Dry inland forest AGC = 31.6466*log (ACDI) 2,970 0.698 0.702
Peat swamp forest AGC = 21.2150*log (ACDI) 1,125 0.588 0.592
Mangrove Forest AGC = 14.4267*log (ACDI) 1,750 0.501 0.519

Statistics Extracted from the AGC Map
The AGC map that has been produced from the estimation 
models contained pixel values ranging from about 0 to 450. 
The histogram shows that there are two distinct regions of 
distributions, creating two different peaks, which reflect the 
estimated AGC for forests and other vegetative covers (Figure 
10). Although the estimation is not valid for vegetation other 
than forests, all pixels will contain AGC values once the model 
is applied to the ACDI image. The statistic of the AGC is 
summarised in Table 7 and the spatial distribution of AGC is 

portrayed on map in Figure 13. It was estimated that the total 
AGC in the entire forests in Malaysia was at 3.0 billion Mg C, 
which was a sum of 2.87 billion Mg C, 71.9 million Mg C, and 
56.86 million Mg C from dry inland, peat swamp and mangrove 
forests, respectively. Given the entire forests in Malaysia is 
divided into three types, the averages AGC estimated for dry 
inland, peat swamp and mangrove forests are 171.45 ± 67.00 
Mg C ha−1, 109.51 ± 60.78 Mg C ha−1, and 91.50 ± 76.18 Mg 
C ha−1, respectively. Total AGC was also calculated based on 
the forested areas found throughout the country by using the 
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AGC map. The carbon stock profile for each state in Malaysia 
has been determined. A summary of the AGC profile is given in 
Table 9 and shown in Figure 14. This information is very useful 
in determining the carbon stock capacity at the national, states, 
and project or site-specific levels.

Figure 9: Scatterplots of correlations between AGC and ACDI 
for (a) overall forest types, (b) dry inland forest, (c) peat swamp 
forest, and (d) mangrove forest.

Table 7: Basic statistics of AGC values (Mg C ha-1) 
throughout Malaysia for the year 2023.

Min Max Mean Median Mode Std. Dev.
0.00 448.79 126.72 151.35 59.83 61.98

Figure 10: Histogram of AGC distribution over Malaysia.

The performance of the AGC map produced from this study 
was measured by extracting the profiles of AGC at different 
forest types and conditions. Twelve areas (Figure 11) have been 
selected to demonstrate the variations of AGC distribution, which 
are summarised in Table 9. The spatial distribution of AGC over 
these areas are depicted in Figure 15, which represent dry inland 
forest, mangrove forest and peat swamp forest, respectively. 
These areas are among areas that are known for their functions.

A comprehensive review on the aboveground carbon stock at 
various forests in Malaysia was reported by [62]. The values 
vary according to the forest types and conditions and most of the 
reported AGC values are agreeable with the values estimated in 
this study. Similar situation occurs in mangrove forest, where the 
range of AGC is agreeable to that of reported by [60,63].

Previous report estimated that the total aboveground biomass 
carbon in 2015 was at 2.248 billion Mg C, with an average of 

154.78 Mg C ha-1, within a forested area of 18.278 million ha 
[64]. This was somehow lower than that estimated by the current 
study. However, it was estimated that the total AGC in all forest 
types in Malaysia was at 3.15 billion Mg Cover the year 2020 
[10]. This is agreeable with that found in the current study.

It was reported that the total AGC in the lowland and hill 
dipterocarps forests in Peninsular Malaysia was at 775,884,956 
Mg Cover the year 2015 [65]. AGC in about 5.25 million ha of 
the dry inland forest, excluding montane forest, in Peninsular 
Malaysia was estimated at 855,970,674 Mg C and 833,141,077 
Mg Cover the year 2016 [66,67]. Current study found that the 
total AGC in the dry inland forest in Peninsular Malaysia was at 
921,731,750 Mg C. The estimates were slightly higher because 
it includes montane forests, which has elevation > 1200 m a.s.l.

A study found the Totally Protected Areas (TPA) forest has 
among the highest carbon densities in Sabah, averaging 165 
Mg C ha−1, Maliau Basin with 220 ± 69 Mg C ha−1, and Danum 
Valley with 207 ± 71 Mg C ha−1. Other forest reserves that are 
in intact condition yielded even higher carbon densities, with 
Imbak Canyon producing the highest mean stock of 229 ± 81 
Mg C ha−1 [68]. These estimates are very close to that found in 
this study with an average of 215.72 Mg C ha−1 in Maliau Basin 
forest landscape (Table 10-B).

It was estimated that AGC in Endau Rompin National Park in 
Johor wat at an average of 281 Mg C ha−1 [69]. Assuming that 
forest condition in this area is similar to the Greater National 
Park, this study estimated the AGC in this kind of forest was at 
203.61 Mg C ha−1 (Table 10-A), which is lower than that was 
estimated by them. However, it was justified that the allometric 
equation that was used in the study is different from that of used 
by this study. This can contribute to the final AGC estimates. 
In contrast, it was indicated that the carbon stock in production 
forest at the production area ranged between 24.6 and 265.8 Mg 
C ha-1 with the mean at 166.8 Mg C ha-1 [70]. This is comparable 
with that found in this study with an average at 192.55 Mg C ha-1 
(Table 10-D).

Another assessment looked into the aspect of chronosequence 
rehabilitated tropical forest stands in Malaysia. It compares 
the carbon stock of different age classes and forest types, 
and evaluates the effectiveness of forest rehabilitation. The 
rehabilitated forests have tree carbon ranging from 0.1 - 54.0 Mg 
C ha-1. In contrast to the natural regenerating secondary forest, 
tree carbon was at 61.0 Mg C ha-1 [71].

AGC Map Accuracy
The AGC map was validated by using separate sample plots that 
were allocated for validation purposes. The predicted AGC values 
were fitted against the actual values measured at validation plots. 
The validation scatter plot is a common tool used to measure the 
performance of a model. It is used to visualise the relationship 
between the predicted values and the actual values of a model. 
The scatter plot shows how well the model is able to predict 
the actual values, and how much variation there is between the 
predicted and actual values. The closer the points are to the line 
of perfect prediction, the better the model’s performance. This 
plot is particularly useful when evaluating regression models, as 
it allows to measure the performance of the models developed 
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to predict continuous variables. The validation scatterplots are 
shown in Figure 12. The accuracy of the model’s performance 
was also assessed by determining the RMSE and SMAPE.

The study found that the AGC predicted on mangrove forest 
attained the best accuracy at 84.85% with ±22.51 Mg C ha-1. 
Lower accuracies obtained for peat swamp and dry inland 
forests, with the attainable accuracies at 77.14% and 77.34%, 
respectively. Table 8 summarises the overall accuracies of the 
predictions resulted from the models.

Figure 11: Map showing locations of the selected areas.

Figure 12: Validation scatterplots for the assessment of models’ 
performance.

AGC Maps Comparisons
Comparisons demonstrate that the maps that the AGC predicted 
from previous studies are in agreement with the one produced 
from this study (Figure 13). The reference AGC maps were 
produced at different pixel resolutions, which Baccini produced 
at 30-m resolution and Hensen produced at 300-m resolution. 
Therefore, the predicted AGC map pixel resolution for the year 
2012, as generated by this study was also resampled accordingly 
to match the spatial resolutions of the reference maps. The 
comparisons were made for all pixels within the AGC maps, 
regardless the land use /land cover classes, depicted in linear 
correlations as shown in Figure 14. The scatterplots show that 
there are two major domains in the AGC values, one at higher 
ends belongs to the forests and the lower parts is for the other 
land use/land cover classes. The comparisons are satisfying with 
r2 of 0.8251 and 0.8624 for Hensen and Baccini, respectively. 
However, it was notable that the predicted AGC in this study was 
underestimated compared to Hensen and slightly overestimated 
compared to Baccini these occur due to several factors, which 
are the different dates of data sources, the map scales, and 
the resampled pixel size. Baccini used Landsat satellite data 
between years 2010 and 2012 to produce the final AGC maps, 
while Hensen et al. used data from years 2011 to 2012 to come 
out with the final maps. Both have produced maps at a global 
scale.
 
This demonstrates that modelling AGC from a single source of 
remotely sensed data subject to uncertainties. Satellite images 
do not measure forest biomass carbon directly, but indirectly 
by integrating the spectral information offered by the sensors. 
Therefore, the uncertainties sourced from the radiometric 
characteristics itself, and all optical imageries only deal with 
the reflectance from the forest canopies, which does not directly 

represent the forest structure and biomass. Other sources of 
uncertainties include misplaced sample plots, spatial resolution 
that does not match plot size, forest sampling time that does 
not match image acquisition dates, tree measurement protocols, 
tree species, variations within different forest types and 
ecosystem habitat, wood density, topography/terrain features, 
and management regimes. These are among issues that are 
very complex to address and normally lead to uncertainties in 
forest carbon biomass estimations. Eventually, different AGC 
map products will always have different sets of values and not 
consistent over times. 

Figure 13: Comparison of different AGC maps.

Figure 14: Scatterplots represent the comparison between AGC 
maps.

Table 8: Accuracies of the AGC predictions
Forest 
Type

RMSE 
(±Mg C 
ha-1)

SMAPE 
(%)

Absolute 
accuracy (%)

Overall 
performance

Dry inland 
forest

87.54 22.66 77.34 Underestimate

Mangrove 
Forest 

53.15 22.86 77.14 Overestimate

Peat swamp 
forest

22.51 15.15 84.85 Underestimate
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State

Forest 
Types

Total AGC (Mg C)

Dry inland 
forest

Mangrove 
forest

Peat Swamp 
forest
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Table 9: Summary of AGC in all states in Malaysia for the year 2023.

n.a = Not available, which is not exist in certain states 
n.a* = Insufficient information available. Forest plantations in Sabah and Sarawak are included in dry inland forest.
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Table 10: Summary of AGC in all states in selected area, representing various conditions and types of forests in Malaysia.

Ref. Name State Forest 
Function

Forest 
Type Area (ha)

AGC (Mg C ha-1) Total AGC 
(Mil. Mg 

C)Min Mean Max Std. Dev

A Greater 
National 
Park 

Pahang, 
Terengganu 
& Kelantan

Totally 
Protected 
Area

Inland 
forest 457,673.99 2.81 203.61 469.42 47.95 93.19

B Maliau Basin Sabah Conservation 
Area 64,362.33 2.79 215.72 455.81 41.58 13.88

C Pulong Tau Sarawak National 
Park 77,995.24 2.80 229.10 432.28 43.39 17.87

D Jengai & 
Sungai 
Nipah Forest 
Reserve

Terengganu Timber 
production 
area 78,475.49 5.54 192.55 321.37 42.06 15.11

E Sungai Pulai Johor Protection 
and 
Production 
areas; 
Ramsar Site

Mangrove 
forest

7,320.47 0.00 82.62 365.54 67.05 0.60

F Menumbok Sabah Totally 
Protected 
Area, 
Wildlife 
Conservation 
Area

18,370.02 0.00 102.64 336.59 82.24 1.89

G Kuching 
Wetlands

Sarawak Totally 
Protected 
Area, 
Ramsar Site

5,949.55 0.00 111.92 313.76 90.67 0.67

H Matang 
Mangrove 
Reserves

Perak Production 
area with 
some 
Protection 
Forest

38,231.83 0.00 86.69 328.20 63.13 3.31

I Pekan Forest 
Reserve 

Pahang Protected 
area

Peat 
swamp 
forest

55,263.83 2.13 146.19 364.71 61.28 8.08

J Loagan 
Bunut

Sarawak National 
Park 11,785.40 2.35 122.76 341.32 74.51 1.45

K Maludam Sarawak National 
Park 44,367.18 15.05 148.02 319.96 47.59 6.57

L Klias Sabah Totally 
Protected 
Area, 
Wildlife 
Conservation 
Area

3,977.90 10.86 177.15 297.47 37.87 0.70
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Figure 15: Map showing spatial distribution of AGC over 
Malaysia for the year 2023.

Figure 16: Summary of AGC in (a) dry inland forest, (b) 
mangrove forest, and (c) peat swamp forest within all states in 
Malaysia.

Conclusions
Landsat data have proven to be a valuable resource for 
forest biomass prediction, offering insights into forest 
ecosystems and their response to environmental changes. 
The combination of Landsat data with advanced modelling 
techniques, the use of cloud-based platforms such as GEE 
and other advanced technologies has enhanced the ability to 

estimate biomass accurately. Further research is needed to 
address challenges, refine methodologies, and improve the 
accuracy of forest biomass predictions using Landsat data.

Figure 17: Maps showing spatial distribution of AGC over the 
selected landscapes of dry inland forest (A-D), peat swamp 
forest (E-H), and mangrove forest (I-L).

The AGC map will be useful in the development of baseline 
for carbon-related, nature-based solution approaches. The 
scrutiny against carbon project in the international voluntary 
markets, in recent years, demand for more accuracy and rigorous 
assessment of data to (i) support evidence of additionality 
through documented forest loss or degradation; (ii) support 
robustness and quantification of GHG emission where data is 
use to estimates the deforestation or degradation rates at project, 
subnational and national level; (iii) assess non-permanence risks 
including site susceptibility to natural hazards; and (iv) support 
evidence of co-benefits.

This study can be expanded for generation of time-series 
assessment over at least a 2-year interval [72,73]. This data 
will also facilitate the subsequent carbon verification process 
and ensures the validity and accountability of emissions data, 
the success of emissions reduction projects, confirming that the 



Copyright © Hamdan Omar, et al.

Open Access J Artif Intel Tech, 2025

 Volume 1 | Issue 2

www.oaskpublishers.com Page: 14 of 17

emissions reductions are permanent and genuine. The reported 
results can be used for the national/subnational mitigation efforts 
including the REDD+ implementation. REDD+ is constructed 
on the principles of additionality against a baseline to ensure 
no leakages and avoid double counting. The generation 
of subnational/jurisdictional level FREL will enable the 
Government to develop more effective mitigation measures in 
achieving the Malaysian Nationally Determined Contribution 
(NDC) and offer the potential to scale up emissions reductions 
more rapidly with greater environmental integrity. More than 
73 countries have implemented their carbon pricing instrument 
(CPI) in emission trading scheme and/or carbon tax as a means 
of bringing down emissions and driving investment into cleaner 
options [74]. The foundation of how allocation is determined 
under these instruments are based on historical intensity of 
emission from the targeted sectors. This study can be used as 
a basis to determine allocation for the forestry sector, if CPI is 
implemented in Malaysia.

Although the study provided a comprehensive map of AGC for 
the entire Malaysia, there are some limitations that are foreseen 
to have potentially be addressed in the future. Spatial resolution 
of Landsat data, which currently offers at 30-m resolution images 
can affect the accuracy of biomass predictions, particularly in 
heterogeneous landscapes. Integration with other data sources 
e.g., LiDAR and SAR, can improve the accuracy of biomass 
predictions. Continuous calibration and validation of biomass 
prediction models are also crucial to ensure their accuracy 
and reliability and these processes are expected to become a 
requirement in the future, especially when dealing with carbon 
projects at a state- or project-level.

In conclusion, the availability of comprehensive inventory data 
is instrumental in unveiling the intricate correlation patterns 
between aboveground carbon levels and the image variables 
extracted from Landsat data [75]. This symbiotic relationship 
between ground-based measurements and remote sensing 
imagery enables better comprehension of the dynamics of 
terrestrial carbon sequestration. With a wealth of inventory 
data at the disposal, more holistic understanding is gained of 
how various ecological and environmental factors influence 
aboveground carbon stocks. This knowledge not only enriches 
our understanding of our planet’s carbon balance but also 
empowers us to make informed decisions for sustainable land 
management and climate change mitigation.

Appendix A: The Sampling Plot Design
Appendix A summarises the designs of the sampling plots that 
were adopted for sampling work in the dry inland, peat swamp 
and mangrove forests.

Figure 18: Layout of a cluster for dry inland forest.

Figure 19: Layout of a cluster for peat swamp forest.

Figure 20: Layout of a cluster for mangrove forest.

*All figures are not true to scale.

Figure 21: Layout of a sampling plot for inland forest (left), peat 
swamp forest (centre), and mangrove forest (right). 

Table 11: Summary living trees measurement in a sampling 
plot.
Forest Type Nest radius (m) Size Tree size
All forest 
types

2 Sapling < 5 cm & ≥ 1.3 m 
in height

Dry Inland 
Forest

4 Small 5 – 14.9 cm, dbh
12 Medium 15 – 29.9 cm, dbh
20 Large ≥ 30 cm, dbh

Peat Swamp 
Forest 

4 Small - 
Medium

5 – 9.9 cm, dbh

10 Large ≥ 10 cm, dbh
Mangrove 
Forest 

7 Small - 
Large

≥ 5 cm, dbh

Appendix B: Number of Sampling Plots
Table 11 lists the locations and the respective number of 
sampling plots that have been collected between years 2011 and 
2023. Data from these sampling plots we used in this study for 
the construction of AGC estimation model.  
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Table 12: Summarised number of sample plots data collected from years 2011 to 2023
Year

State 20
11

20
12

20
13

20
14

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23 Total

Peninsular Malaysia
Johor 4 0 3 2 0 0 0 0 0 0 54 0 63
Kedah 0 0 0 0 0 0 0 0 0 10 39 0 49
Kelantan 18 0 0 4 0 0 0 0 0 0 0 0 22
Melaka 0 0 0 0 0 0 0 0 0 12 0 0 12
Negeri Sembilan 58 4 12 0 40 0 0 0 0 0 15 0 129
Pahang 76 25 0 41 0 0 0 0 0 0 0 4 146
Perak 144 0 0 0 0 46 0 0 0 0 4 0 194
Perlis 10 0 0 0 0 0 0 0 0 0 0 0 10
Selangor 71 21 0 0 36 0 0 0 0 0 0 0 128
Terengganu 27 6 51 0 0 0 0 0 0 0 47 8 139
Sub-Total 892
East Malaysia
Sabah 0 0 0 0 0 0 0 0 632 1380 1886 460 4358
Sarawak 0 0 0 0 0 127 275 67 126 0 0 0 595
Sub-Total 4953
Total 5845
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