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ABSTRACT
Manual inspection of indoor construction sites for progress monitoring is time-consuming, error-prone, and inefficient. Automated solutions 
using Deep Learning (DL) and Augmented Reality (AR) offer significant potential, but are hampered by the scarcity of large labeled 
datasets, especially for complex indoor environments. This paper presents a novel and automated methodology for Indoor Construction 
Progress Monitoring (ICPM) that addresses this data bottleneck by leveraging Building Information Modeling (BIM) and synthetic 
data. Our approach uses a photorealistic graphics engine to generate a large, annotated synthetic dataset of Mechanical, Electrical, and 
Plumbing (MEP) components within BIM environments. A YOLOv8 instance segmentation model, enhanced with domain adaptation 
techniques, is trained on this synthetic data and integrated with an AR application on HoloLens 2 for real-time on-site progress monitoring. 
Experiments demonstrate that the proposed synthetic data-powered model achieved a substantial improvement in mAP50 compared to 
models trained on limited real-world data. A preliminary on-site validation further highlights the practical potential of the AR-integrated 
system for efficient and reliable ICPM, demonstrating a feasible path towards accessible and user-friendly automated inspection tools that 
can be readily adopted by construction professionals on real-world sites.
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Introduction
Background and Problem Statement
The Architecture, Engineering, and Construction (AEC) industry 
is under increasing pressure to improve efficiency accuracy, and 
safety amidst complex project demands [1]. Indoor Construction 
Progress Monitoring (ICPM) is vital for ensuring adherence 
to project schedules and budgets [2]. However, traditional 
ICPM methods, heavily reliant on manual inspections and 
documentation, pose significant challenges. These methods are 
inherently labor-intensive, time-consuming, and susceptible 
to human error [3]. This is particularly problematic in modern 
construction, where complex Mechanical, Electrical, and 

Plumbing (MEP) systems are prevalent [4]. The dynamic 
nature of construction sites, marked by frequent changes and 
unforeseen events, further compounds these difficulties, often 
rendering manual reports obsolete and leading to inaccurate 
progress assessments [5].

Building Information Modeling (BIM) offers a centralized 
digital platform for project information [6]. However, realizing 
BIM’s full potential for on-site ICPM requires bridging the gap 
between the digital model and the physical site. Augmented 
Reality (AR) shows promise for visualizing BIM data on-
site, facilitating comparisons between as-designed and as-
built conditions [7]. Critically, existing AR-based solutions 
often require manual alignment of the BIM model and rely on 
subjective visual inspection, limiting automation and accuracy, 
particularly for complex MEP components [8].
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Computer Vision (CV) and Deep Learning (DL), specifically 
instance segmentation, offer the potential to automate ICPM 
tasks [9]. Instance segmentation is particularly well-suited 
for ICPM of MEP systems due to its ability to detect and 
delineate individual components, even in cluttered and 
occluded environments. However, a major bottleneck for DL in 
construction, especially for indoor MEP systems, is the scarcity 
of large, labeled datasets [10]. Collecting and annotating such 
data is costly and time-consuming. Therefore, a need exists for a 
fully automated, data-efficient, and AR-integrated ICPM system 
that can accurately detect and segment MEP components in 
complex indoor environments, bridging the gap between digital 
design and physical construction.

Research Objectives and Contributions
To address the limitations of current ICPM methods, this paper 
proposes a novel approach for automated ICPM, leveraging the 
synergies of BIM, synthetic data, DL, and AR. The research 
objectives and primary contributions are:

•	 Develop a streamlined and automated pipeline for generating 
large-scale, photorealistic, and accurately annotated 
synthetic datasets of indoor construction scenes, specifically 
targeting MEP components. This pipeline addresses the 
data scarcity bottleneck and provides a scalable solution for 
future research. The generated dataset, MEP-SEG, is made 
publicly available [11].

•	 Adapt and optimize a state-of-the-art DL model, specifically 
YOLOv8, for accurate instance segmentation of MEP 
components in complex indoor construction environments. 
This objective focuses on achieving high precision and 
robustness in detecting and identifying critical building 
elements using a combination of synthetic pre-training and 
fine-tuning on real-world data.

•	 Integrate the trained DL model with a commercially available 
mobile AR platform for real-time, on-site construction 
progress monitoring and BIM-based comparison. This 
integration aims to create a practical and user-friendly tool 
for construction professionals.

•	 Conduct rigorous experimental validation using both 
synthetic (MEP-SEG) and real-world (MEP-REAL) 
datasets from diverse construction sites. This evaluation 
includes ablation studies to assess the impact of domain 
adaptation techniques and different ratios of synthetic and 
real data, ensuring the robustness, generalizability, and 
practical applicability of the methodology.

•	 Evaluate the system’s usability, acceptability, and perceived 
effectiveness through a user study with 21 construction 
professionals, employing quantitative questionnaires and 
qualitative interviews. This provides practical insights into 
the real-world applicability and potential benefits of the 
proposed AR-integrated ICPM system.

This research advances the field of automated construction 
progress monitoring by providing a validated and innovative 
methodology that addresses key limitations of existing methods, 
offering significant improvements in accuracy, efficiency 
and automation. Furthermore, by integrating a commercially 
available AR solution and making the synthetic dataset public, 
it contributes to the adoption of advanced digital technologies in 
the AEC industry.

Figure 1: Overview of the proposed approach

Article Organization
The remainder of this paper is structured to detail the proposed 
methodology, experimental validation, and key findings.  
Following this introduction, Section 2 provides a comprehensive 
review of the relevant literature on automated ICPM, focusing 
on the application of CV, DL, AR, and synthetic data generation. 
Section 3 elaborates on the proposed methodology, detailing the 
BIM-based synthetic data generation pipeline, the architecture 
and training of the YOLOv8 instance segmentation model, and 
the integration of this model with an AR application for real-time 
ICPM. Section 4 presents a detailed account of the experimental 
setup, results (including evaluations on both synthetic and real-
world datasets), ablation studies, mask alignment analysis, and 
user feedback from a study with construction professionals. 
Section 5 discusses the key findings, implications, limitations, 
and potential future directions of this research. Finally, Section 
6 concludes the paper by summarizing the main contributions 
and highlighting the broader impact of this work on automated 
ICPM.

This paper significantly expands upon the foundational 
work presented in our previous conference paper [12], 
which introduced the BIM-based synthetic data generation 
pipeline.  Specifically, this article provides a more detailed and 
comprehensive presentation of the methodology. Furthermore, 
this manuscript presents novel research outcomes, including the 
seamless integration of the trained DL model with an augmented 
reality application for on-site deployment, a thorough evaluation 
of mask alignment strategies, and a comprehensive assessment 
of the system’s usability and user acceptance through detailed 
user studies and real-world experimentation.

Literature Review
Progress Monitoring in Construction
Ineffective progress monitoring is a barrier to successful 
project delivery because it prevents timely detection of 
deviations from planned schedules and budgets [13]. Traditional 
methods, including manual site inspections and paper-based 
documentation, are not only inefficient, but also introduce 
subjectivity and increase the likelihood of errors [14]. The 
complexity and dynamism of indoor construction environments, 
especially those with dense MEP installations, make 
comprehensive and accurate manual monitoring practically 
unsustainable [15,16]. As a result, delays in reporting, reactive 
project management and increased risk of cost overruns and 
schedule delays are common outcomes [17]. The need for 
automated and reliable solutions to address these challenges is 
therefore essential. To address these challenges, research has 
explored various automated and semi-automated technologies 
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[18]. Reality capture techniques, such as laser scanning and 
photogrammetry, offer accurate 3D representations of as-
built conditions [19-21]. These methods enable Scan-vs-BIM 
comparisons for deviation analysis [22-24]. However, they often 
require specialized equipment, skilled operators, and extensive 
post processing, hindering real-time, on-site application and 
scalability [25]. Sensor-based tracking systems (RFID, UWB, 
BLE, GPS) provide real-time data on material flow, equipment 
utilization, and personnel location [26-30]. While valuable for 
resource management, these systems do not directly address 
the visual assessment of construction progress, particularly 
for complex MEP installations. Computer vision (CV) and 
Deep Learning (DL) are increasingly being applied in the AEC 
industry to automate tasks such as progress monitoring, safety 
inspection, and defect detection [31]. Specifically, for ICPM, 
DL-powered CV offers the potential to automate the visual 
assessment of construction progress, overcoming the subjectivity 
and labor-intensive nature of manual inspections [32]. Key CV 
techniques relevant to ICPM include object detection, semantic 
segmentation, and instance segmentation. Object detection 
has been used to identify and locate construction elements, 
such as MEP components, equipment, and workers [33,34]. 
Semantic segmentation provides a pixel-level classification 
of the scene, enabling the identification of different building 
materials and elements [35]. Instance segmentation combines 
the benefits of both, detecting and delineating individual object 
instances, even with occlusions, making it particularly suitable 
for tracking MEP components in complex indoor environments 
[36,37]. Various Convolutional Neural Network based (CNN) 
models have been explored for these tasks, including the You 
Only Look Once (YOLO) family of object detectors [38,39], 
Mask R-CNN [40,41], and, more recently, Vision Transformers 
(ViTs) [42,43]. While these models have shown promising 
results, their application to ICPM, particularly for indoor MEP 
systems, is often hampered by the lack of large, labeled datasets 
[44]. The complexity, clutter, and occlusions characteristic of 
indoor construction environments further complicate the task of 
accurate object recognition and segmentation. Existing research 
has applied CV and DL to structural element monitoring [45-
47] and MEP system progress tracking [48]. However, many of 
these approaches rely on limited real-world data, hindering their 
generalizability and robustness in diverse construction scenarios. 
The need for extensive manual annotation of real-world images 
further limits the scalability of these methods. This data scarcity 
challenge motivates the exploration of synthetic data generation 
techniques, as discussed in the next section.

Synthetic Data Generation
Synthetic data generation offers a promising solution to the 
data scarcity challenge in construction, enabling the creation 
of large, labeled datasets without costly and time-consuming 
manual annotation [49]. This is particularly crucial for training 
robust DL models for complex tasks like instance segmentation 
of MEP components in cluttered indoor environments [50]. 
Various methods exist for generating synthetic data, including 
graphics engine-based approaches and hybrid methods that 
combine synthetic and real-world data [51-53]. However, for 
construction progress monitoring, BIM-based synthetic data 
generation offers significant advantages [54]. BIM models 
inherently contain rich geometric and semantic information 
about building elements, providing a readily available source 

for creating realistic and accurately labeled virtual construction 
environments [55]. BIM-based approaches typically involve 
importing BIM models into graphics or game engines 
(e.g., Unreal Engine, Unity, Isaac Sim), configuring virtual 
environments with realistic materials and lighting, and rendering 
synthetic images from various viewpoints [56]. Crucially, the 
semantic information in BIM models allows for automated 
generation of ground truth annotations, including object classes, 
instance segmentation masks, and depth maps, eliminating the 
need for manual labeling [57]. This automated annotation is a 
key advantage, enabling the creation of large-scale datasets with 
minimal effort [58]. Our approach builds upon this foundation, 
utilizing a streamlined pipeline and focusing specifically on the 
detailed representation of MEP components within complex 
indoor scenes [59]. Despite the advantages of synthetic data, a 
key challenge is the” reality gap” - the difference in appearance 
and characteristics between synthetic and real-world images 
[60]. DL models trained solely on synthetic data may exhibit 
limited generalization performance when deployed in real-world 
scenarios. Therefore, domain adaptation techniques are crucial 
for bridging this gap and improving the transferability of models 
[61]. These techniques aim to reduce the discrepancy between 
the synthetic (source) and real-world (target) domains, enabling 
models trained on synthetic data to perform well on real-world 
images [62]. Common approaches include Unsupervised 
Domain Adaptation (UDA) using adversarial training [63], 
and Semi-Supervised Domain Adaptation (SSDA) leveraging a 
small amount of labeled real-world data [64].

Augmented Reality in Construction
Augmented Reality (AR) offers significant potential for 
enhancing construction processes by overlaying digital 
information onto the real-world view [65,66]. In the context 
of progress monitoring, AR enables direct visual comparisons 
between the as-planned BIM model and the as-built reality, 
facilitating the identification of discrepancies and deviations 
[67]. Various AR devices, including head-mounted displays 
(HMDs) like Microsoft HoloLens and Magic Leap, and 
handheld devices running ARKit or ARCore, have been 
explored for construction applications [68, 69]. The choice of 
device depends on factors such as user mobility, environmental 
conditions, and the required level of immersion [70]. Several 
studies have demonstrated the use of AR for on-site progress 
monitoring. For example, Martins et al. [71] proposed an AR-
based framework for bridge inspection, while Kopsida and 
Brilakis [72] developed a system for real-time volume-to-plane 
comparisons. More recent work includes integrated systems 
combining AR with other technologies like 3D scanning and 
robotics for remote inspection and monitoring [73,74]. However, 
a key limitation of many existing AR-based progress monitoring 
systems is their reliance on manual alignment of the BIM model 
with the real-world scene and visual inspection for discrepancy 
detection [75]. This process can be time-consuming, subjective, 
and prone to errors [76]. Furthermore, many systems lack 
integration with automated object recognition and segmentation 
capabilities, limiting their ability to provide quantitative 
progress data and detailed analysis of specific building elements, 
especially complex MEP systems [77]. Our work addresses 
these limitations by integrating a deep learning-based instance 
segmentation model with an AR platform, enabling automated 
detection and segmentation of MEP components and facilitating 
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a more objective and efficient comparison between the BIM 
model and the as-built reality. This integration of DL-powered 
object recognition with AR visualization represents a significant 
step towards more automated and data-driven construction 
progress monitoring.

Methodology
Overview of the Proposed Approach
This research introduces a novel, integrated methodology 
for automated ICPM. The approach leverages the synergistic 
combination of BIM, synthetic data, DL, and AR to create a 
practical, efficient, and robust system for real-time, on-site 
progress assessment. (Figure 1).

The core of the methodology is a three-stage process. First, a large-
scale, labeled synthetic dataset of indoor construction scenes, 
specifically focusing on MEP components, is automatically 
generated using existing BIM models and a photoreal istic 
graphics engine (NVIDIA Isaac Sim). This addresses the critical 
data scarcity challenge hindering DL-based ICPM (Figure 1 
A). Second, a state-of-the-art instance segmentation model, 
YOLOv8, is trained on this synthetic dataset and enhanced 
with a real images dataset to improve its robustness and 
generalizability to real-world construction sites (Figure 1 B). 
Third, the trained DL model is integrated into a commercially 
available mobile AR application, NEXT-BIM1, designed for the 
HoloLens 2. NEXT-BIM collaborated on this research project, 
providing essential support with their expertise in BIM and 
AR, with the goal of integrating the developed technology into 
their tools in the future. This AR application enables real-time, 
onsite visualization of BIM models and instance segmentation 
results overlaid onto the physical environment (Figure 1 C). 
This AR application also facilitates on-site progress comparison 
by superimposing the DL model’s predictions onto the BIM 
model view, allowing inspectors to visually assess alignment 
and identify discrepancies. The integrated system is rigorously 
evaluated on both synthetic and real-world datasets, assessing 
accuracy, robustness, and user acceptance. The subsequent 
sections detail each stage of this methodology.

Synthetic Data Generation
Our methodology hinges on the automated generation of a 
large, diverse synthetic dataset to train robust DL models for 
ICPM, reducing dependence on scarce labeled real-world data. 
The pipeline leverages BIM models’ geometric and semantic 
richness alongside NVIDIA Isaac Sim’s photorealistic rendering 
capabilities. It consists of key steps including BIM model 
preparation and virtual environment setup.

BIM Model Preparation
The process begins with selecting and preparing BIM models 
representing indoor construction environments such as offices, 
laboratories, and commercial spaces (Figure 2). To ensure 
relevance for MEP system ICPM, a filtering process isolates 
essential MEP components (e.g., ducts, pipes, cable trays, HVAC 
units) while removing non-essential architectural elements. This 
optimization preserves computational resources and geometric 
fidelity.

Using BIM software’s built-in functionalities, models are 
reviewed and adjusted to maintain compatibility with the 

graphics engine. Simplifications are made where necessary to 
optimize rendering performance without compromising the 
accuracy of MEP components.

Virtual Environment Setup
The prepared BIM models are imported into NVIDIA Isaac Sim; 
a high-fidelity simulation platform built on NVIDIA Omniverse. 
Isaac Sim is selected for its advanced rendering capabilities, Python 
scripting automation, and support for BIM data manipulation.

To enhance photorealism, materials and textures are assigned using 
the NVIDIA Omniverse API (Application Programming Interface, 
employing physically-based rendering materials that accurately 
represent construction materials such as metal, concrete, plastic, 
and insulation. MEP components are given specific textures (e.g., 
galvanized steel for ducts, copper for pipes) to improve realism.

Lighting is configured to simulate both natural and artificial 
illumination. Sun and sky models replicate daylight conditions, 
while artificial lighting is adjusted to match fixtures present 
in BIM models. Variations in intensity and color temperature 
introduce diversity, mimicking real-world site conditions.

To replicate real construction environments, randomized scene 
clutter is introduced, including objects like tools, scaffolding, 
and debris. These elements create occlusions, challenging the 
DL model to accurately detect and segment MEP components 
under varying conditions, thereby bridging the gap between 
synthetic and real-world data.

Figure 2: Snapshots of three BIM projects imported into the 
graphics engine.

Virtual Camera Configuration
To capture diverse viewpoints of the virtual construction scenes, 
we configure a virtual camera within Isaac Sim and define a set 
of camera poses that mimic realistic on-site inspection paths. 
The virtual camera is configured to emulate the specifications of 
a typical mobile device camera, with parameters such as:
1.	 Field of View (FOV): A realistic FOV is set to mimic 

the field of view of a handheld camera, ensuring that the 
synthetic images capture a representative portion of the 
indoor scene.

2.	 Resolution: The image resolution is set to a standard 
resolution (e.g., 640x640 pixels) to balance image quality 
and computational efficiency during rendering and 
annotation.
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•	 Distortion parameters: To further enhance realism and 
mimic real-world camera imperfections, we introduce lens 
distortion effects to the virtual camera model. Radial and 
tangential distortion parameters are randomly sampled 
within a realistic range to simulate lens imperfections and 
create more diverse synthetic images.

After configuring the virtual camera, the next step is to determine 
its possible positions within each scene. This involves defining 
routes that mimic the movement of a worker inspecting the 
construction site. The API provides a tool for manually creating 
these routes. While grid-based viewpoints could be used, 
manually drawn routes provide a more natural representation 
of an inspector’s movement. This parameterized camera pose 
generation strategy ensures a systematic and comprehensive 
cover age of the virtual environment while maintaining realism 
and avoiding repetitive viewpoints.

Image Capture and Preprocessing
Once the virtual environment and camera configurations are 
set up, an automated image capture process is initiated using 
Python scripting within Isaac Sim. The graphics engine renders 
photorealistic RGB images for each defined camera pose, 
capturing variations in lighting, materials, and scene clutter. 
To enhance dataset diversity, camera angles are systematically 
varied across different BIM spaces, and date-time settings are 
randomized to simulate different sun positions and lighting 
conditions.

Minimal preprocessing is applied before training, primarily 
resizing images to a fixed resolution (e.g., 640x640 pixels) 
using bilinear interpolation to ensure consistency. Additional 
preprocessing, such as noise reduction or enhancement, is 
avoided to preserve realism and allow the DL model to learn 
from raw synthetic images.

Automated Annotation Generation
A major advantage of synthetic data is the automated generation 
of precise ground-truth annotations. Using BIM metadata 
and Isaac Sim’s ray tracing, the pipeline produces detailed 
annotations, including instance segmentation masks, semantic 
segmentation labels, depth maps, and bounding box annotations.

Instance segmentation masks are generated by casting rays to 
identify object instances, grouping pixels accordingly. Semantic 
segmentation labels classify each pixel based on predefined BIM 
object classes (e.g., ducts, pipes, walls). Depth maps provide 
geometric scene information, enhancing applications like depth-
aware progress monitoring. Bounding boxes are derived from 
instance segmentation masks, enclosing each MEP component 
for object detection tasks.

This automated annotation process ensures pixel-perfect labels 
across all synthetic images, creating a comprehensive dataset for 
training DL models for ICPM tasks.

Deep Learning Model for Instance Segmentation
Accurate and robust instance segmentation of MEP components 
is crucial for effective ICPM. To achieve this, we evaluated 
several state-of-the-art DL architectures, including Faster 
R-CNN [78], Mask R-CNN [40], and various members of the 

YOLO family [79,38]. While Faster R-CNN and Mask R-CNN 
offer high accuracy, their two-stage architectures result in 
significantly slower inference speeds compared to the single-
stage YOLO models. Vision Transformers (ViTs) [42] and the 
Segment Anything Model (SAM) [80] were also considered; 
however, their higher computational demands made them less 
suitable for real-time deployment on a resource-constrained 
mobile AR device like the HoloLens 2.

Based on these considerations, we selected YOLOv8, a recent 
and efficient iteration of the YOLO family, as the most suitable 
model for our application. YOLOv8 provides an excellent 
balance of high accuracy and real-time inference speed, a critical 
requirement for on-site deployment.

To address the reality gap between synthetic and real-world data, 
we employed a two-stage training strategy incorporating domain 
adaptation:

•	 Pre-training on synthetic data: The YOLOv8 model was 
initially pre-trained on the large and diverse MEP-SEG 
synthetic dataset generated as described in Section 3.2.  This 
pre-training provided a strong foundation for the model to 
learn robust features for MEP component detection and 
segmentation, leveraging the perfectly labeled synthetic 
data

•	 Fine-tuning with mixed data: The pre-trained model 
was then fine-tuned using a mixed dataset consisting of 
synthetic images from MEP-SEG and real-world images 
from the MEP-REAL dataset (detailed in Section 4). We 
experimented with different ratios of synthetic and real 
images to determine the optimal balance for achieving 
high performance on real-world data. This fine-tuning, 
a form of transfer learning, allows the model to adapt to 
the characteristics of real-world images while retaining the 
knowledge gained from the synthetic data. We also explored 
initializing the model with weights pre-trained on the large-
scale COCO (Common Objects in Context) dataset [81] for 
comparison.

Data augmentation techniques, including random rotations, 
scaling, horizontal flips, color jittering, and mosaic augmentation 
(as implemented in the Ultralytics YOLOv8 framework), were 
applied during both pre-training and fine-tuning to further 
enhance the model’s robustness and generalization capabilities. 
This two-stage training strategy, combining large-scale synthetic 
data pre-training with targeted fine-tuning, effectively bridges the 
reality gap and enables high accuracy and robustness for MEP 
component instance segmentation in real-world construction 
environments. Specific training details, hyperparameters, and 
evaluation metrics are presented in Section 4. 

Augmented Reality Integration and On-site Comparison
To bridge the gap between the digital model and the physical 
construction site, we integrated the trained deep learning model 
within an AR application, leveraging the capabilities of the 
Microsoft HoloLens 2 HMD. This integration enables real-time, 
on-site visualization of the instance segmentation results super 
imposed onto the actual MEP components, facilitating intuitive 
progress monitoring and discrepancy detection.
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AR Device and Application
The Microsoft HoloLens 2 was chosen as the AR platform for this 
research due to its advanced spatial mapping, object recognition, 
and gesture recognition capabilities, as well as its adaptation in 
construction environments. The HoloLens 2 is a self-contained, 
untethered holographic computer that allows users to interact 
with digital content and holograms in the real world. The device 
is equipped with a suite of sensors, including depth sensors, an 
Inertial Measurement Unit (IMU), and an RGB camera, which 
provide real-time data about the user’s environment and position.

For this application, we utilized the NEXT-BIM application, 
which is specifically designed for on-site construction progress 
monitoring using AR. NEXT-BIM provides functionalities 
for visualizing BIM models in AR, aligning the virtual model 
with the physical environment, and interacting with the model 
through gestures and voice commands. We integrated our trained 
YOLOv8 model into the NEXT-BIM application to enable real-
time instance segmentation of MEP components directly within 
the HoloLens 2’s field of view.

Model Deployment
Deploying the trained YOLOv8 model on the HoloLens 2 
required careful consideration of the device’s computational 
resources and performance constraints. To achieve real-time 
inference, we optimized the model by converting it to the 
Open Neural Network Exchange (ONNX) format, which is 
suitable for efficient deployment on various hardware platforms, 
including mobile and embedded devices. The ONNX model 
was then integrated into the NEXT-BIM application, enabling 
on-device inference without the need for an external server or 
cloud connection. This on-device deployment ensures seamless 
user experience during field inspections without an internet 
connection. The specific details of the model conversion and 
integration process are beyond the scope of this paper, but we 
ensure it followed industry best practices for deploying DL 
models on resource-constrained devices.

Discrepancy Analysis
A crucial aspect of the AR-integrated system is accurately aligning 
and superimposing the YOLOv8 model’s predictions (predicted 
masks) with the corresponding elements in the BIM model 
(ground truth masks). This enables a direct visual comparison 
between the as-designed and as-built states. The overall process is 
illustrated in Figure 3, and consists of the following steps:
1.	 RGB Image Capture and Metadata Acquisition: The 

process begins by capturing the real-world scene using the 
HoloLens 2’s built-in RGB camera. Simultaneously, we 
record crucial metadata associated with the captured image, 
including the camera’s position, orientation, focal length, 
and resolution. This metadata is essential for accurately 
positioning the virtual camera within the BIM environment, 
enabling a direct comparison.

2.	 BIM model filtering for ground truth extraction: To 
extract the Ground Truth (GT) masks, we filter the objects 
withinthe virtual BIM environment provided by the NEXT-
BIM application. This filtering leverages the Industry 
Foundation Classes (IFC) specifications of the objects and 
the HoloLens 2’s intrinsic camera data (acquired in step 
1).  Objects are rigorously filtered based on four criteria, as 
illustrated in Figure 4:

Figure 3: Process explaining the comparison of the BIM model 
with the prediction of the DL segmentation model in real-time.

Figure 4: Illustration of the BIM model filtering process. Objects 
that meet all filtering criteria are shown with stripes; those that 
do not are shown in gray.

C1 Object type: The object must belong to a predefined target 
category (e.g., MEP equipment), specified by 523 the user and 
relevant to the inspection task.

C2 Camera frustum: The object must lie within the camera’s 
frustum, the truncated pyramid defining the visible 3D space. 

C3 Distance: The object must be within a 5-meter distance 
threshold, ensuring sufficient accuracy of the HoloLens 2’s 3D 
mesh reconstruction. 

C4 Occlusion: The object must have a visibility score above 
a threshold (e.g., 0.8), calculated based on ray532 casting to 
determine the percentage of the object’s surface visible from the 
camera’s viewpoint.
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Only objects satisfying all four criteria are considered for GT 
mask generation.

3.	 Semantic extraction and GT mask generation: The filtered 
IFC objects are rendered within the virtual environment 
using distinct colors corresponding to their respective 
classes. This creates a visual representation of the expected 
visible objects. A screenshot of this rendered view is 
captured, providing a 2D projection of the relevant BIM 
elements. This screenshot then undergoes pixel-level 
processing to extract the GT masks. Pixels corresponding to 
the highlighted MEP components are identified and grouped 
based on their instance IDs, resulting in a set of binary 
masks representing the ground truth.

4.	 YOLOv8 inference and post-processing: The RGB image 
captured in step (1) is fed as input to the deployed YOLOv8 
model. The model performs instance seg mentation, 
generating a set of predicted masks. The YOLOv8 model 
outputs two key tensors: a detection tensor (1x8400x 
(4+5+32)) containing 8400 detection proposals (each 
with 4 bounding box coordinates, 5 confidence scores, 
and 32 segmentation weights), and a proto mask tensor 
(1x32x160x160) containing 32 prototype masks of 160x160 
pixels. These are combined to generate the final instance 
masks. Post-processing includes extracting detection data, 
applying Non-Maximum Suppression (NMS) to remove 
redundant boxes, generating binary masks, and compiling 
results for comparison with ground truth.

5.	 Mask association: To ensure a robust comparison and 
handle potential false positives from the YOLOv8 model, 
we perform mask association before alignment. Each 
predicted mask is compared against all intersecting ground 
truth (GT) masks. This accounts for situations where a 
single predicted object might correspond to multiple objects 
in the BIM model, or vice-versa. Only predicted masks that 
have a non-zero intersection with at least one GT mask 
are considered for further processing. This step effectively 
filters out spurious detections that do not correspond to any 
element in the BIM model.

6.	 Mask alignment and discrepancy visualization: After the 
mask association step, the remaining predicted masks and 
their corresponding GT masks are aligned. This alignment 
is crucial to account for minor discrepancies between the 
as-designed positions in the BIM model and the actual as 
built positions of the MEP components, as well as potential 
inaccuracies in camera pose estimation. We evaluated two 
alignment methods.

•	 Centroid-based alignment: This computationally efficient 
method aligns the masks by translating the predicted mask 
so that its centroid coincides with the centroid of the GT 
mask. The centroid of a mask M is calculated as:

( , ) ( , )
,

( ) ( )

x y

x y

x y M x y M
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Area M Area M
∈ ∈

= =∑ ∑ 	             (1)

where (x, y) are the pixel coordinates and Area(M) is the number 
of pixels in the mask. This method is fast but less robust to 
significant shape variations and rotations.

•	 Affine transformation alignment: This method estimates 
an affine transformation (translation, rotation, and scaling) 
that best aligns the predicted mask to the GT mask. We 
use the Enhanced Correlation Coefficient (ECC) algorithm 
[82], which finds the optimal transformation matrix A and 
translation vector t by minimizing the difference between 
the warped predicted mask and the GT mask:
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where IGT is the GT mask image, IPred is the predicted mask 
image, and (x, y) are pixel coordinates.  This method is more 
robust to shape variations but is computationally more intensive.

After alignment, discrepancies between the predicted and GT 
masks are visualized within the AR view. Correctly identified 
and aligned MEP components (those with an Intersection over 
Union (IoU) score above a predefined threshold - typically 0.5) 
have their bounding boxes rendered in red, providing immediate 
visual feedback to the user. The IoU is calculated as.
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Area P GIoU
Area P G

∩
=

∪
			                (3)

where P is the predicted mask and G is the ground truth mask. 
Objects falling below the IoU threshold, or those not detected by 
the model, are not highlighted, indicating potential deviations 
from the BIM model.

This comprehensive alignment and superposition process, 
combining automated GT mask extraction (with rigorous filtering), 
real-time DL-based instance segmentation, and robust mask 
alignment, allows an accurate and efficient on-site comparison 
between the planned BIM model and the built reality.

Experiments and Results
To evaluate the effectiveness and generalizability of the proposed 
methodology, we conducted a series of experiments using both 
synthetic and real-world data. The experiments were designed 
to assess the performance of the trained YOLOv8 model for 
instance segmentation, the accuracy of the alignment algorithms, 
and the overall usability of the AR-integrated system for on-site 
progress monitoring.

The experiments were performed using a combination of 
hardware and software tools. Model training and synthetic 
data generation were conducted on a laptop equipped with 
an Intel Core i7-10750H processor, 32 GB of RAM, and an 
NVIDIA Quadro RTX 3000 GPU. The graphics engine used for 
synthetic data generation was NVIDIA Isaac Sim, leveraging its 
Omniverse platform and USD (Universal Scene Description) 
format for scene representation. The YOLOv8 model was 
implemented using the Ultralytics API2, and the AR application 
was developed using the NEXT-BIM C++ framework on the 
Microsoft HoloLens 2 platform. The HoloLens Development 
Mode enabled seamless communication between the device and 
a paired computer for data transfer and debugging.
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Synthetic Data Generation Results
This section presents results from our BIM-based synthetic data 
generation pipeline, demonstrating its effectiveness in creating 
a large, diverse, photorealistic dataset (MEP-SEG) for training 
deep learning models for ICPM. The pipeline lever ages BIM 
geometry and semantics, coupled with NVIDIA Isaac Sim’s 
rendering capabilities, to realistically simulate real-world 
construction environments.

MEP-SEG was generated from three diverse BIM models: 
an eight-story office tower, a scientific university laboratory 
extension, and a business school campus. This variety ensures 
the dataset encompasses a wide range of spatial configurations, 
architectural styles, and MEP system designs. BIM models 
were pre-processed in Revit to remove irrelevant architectural 
elements, optimizing rendering performance.

The automated pipeline generated 8,751 640x640 pixel images 
with instance segmentation masks, covering 13 common MEP 
component classes (e.g., pipes, ducts, cable trays). The instance 
distribution (Table 1) reflects real-world imbalances.

Table 1: MEP-SEG instance distribution
Class Instances

Wall 90,801
Pipe 44,998
Floor 44,266
Circular duct 34,973
Rectangular duct 26,227
Framework 11,627
Air vent 8,585
Pole 5,131
Fan coil 4,286
Radiant panel 3,031
Ceiling 2,431
Pipe accessory 1,449
Climatic equipment 1,309

Figure 5 demonstrates the photorealistic quality of the images, 
achieved through physically-based materials, realistic lighting 
(natural and artificial), and randomized clutter. Diverse 
viewpoints were captured via defined inspection paths within 
the BIM models.

Annotations (instance segmentation, semantic labels, depth 
maps) are pixel-perfect and consistent with the BIM data. The 
entire MEP-SEG dataset was generated in approximately 9 
hours. The dataset is publicly available [11].

In summary, MEP-SEG provides a high-quality, diverse, 
accurately annotated dataset for ICPM deep learning, addressing 
data scarcity and advancing automated construction progress 
monitoring. Its photorealism and precise annotations make 
it a valuable resource for developing robust computer vision 
solutions for the construction industry.

Figure 5: Synthetic image examples and instance segmentation 
masks. (a) RGB image. (a*) Mask. (b) RGB image (different 
lighting). (b*) Mask. (c) RGB image (partial occlusions). (c*) 
Mask.

Model Training and Evaluation
This section details the training procedure, evaluation 
methodology, and results for the YOLOv8 instance segmentation 
model on the synthetic and real-world datasets. The primary 
objective is to assess the effectiveness of synthetic data for 
training deep learning models for ICPM and to evaluate 
the impact of domain adaptation techniques. For evaluation 
purposes, real-world images were collected from inside five 
construction sites: three used for the MEP-SEG dataset and two 
new projects. Two distinct devices were used for data collection: 
a smartphone and the Microsoft HoloLens 2 AR glasses.  A total 
of 350 images were acquired and manually labeled, resulting 
in the MEP-REAL dataset that will be used in the following 
experiments.

We focused on the detection of five classes: ducts, pipes, air 
vent, radiant panels, and fan coil units. These objects are among 
the most difficult to detect in MEP domain images, due to their 
varied shapes, textures and sizes.

Training Procedure
The YOLOv8 instance segmentation models were trained using 
a consistent set of hyperparameters across all experiments to 
ensure fair comparisons. The training configuration included:

•	 Optimizer: Stochastic Gradient Descent (SGD)
•	 Momentum: 0.937
•	 Weight Decay: 0.0005
•	 Initial Learning Rate: 0.01
•	 Learning Rate Schedule: Linear warmup followed by cosine 

annealing.
•	 Batch Size: 6
•	 Number of Epochs: 1000 (maximum)
•	 Input Image Size: 640x640 pixels

The learning rate schedule involved a linear warmup phase for 
the initial epochs to stabilize training, followed by a cosine 
annealing decay to gradually reduce the learning rate, aiding 
convergence.
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To prevent overfitting and select the best performing model 
iteration, early stopping was employed with a patience of 50 
epochs. Training was halted if the primary validation metric 
(typically a combination of losses or mAP) did not show 
improvement for 50 consecutive epochs. The model weights 
corresponding to the epoch with the best validation performance 
were saved and used for all subsequent evaluations and 
deployment.

Data augmentation techniques, including random rotations, 
scaling, horizontal flips, color jittering, and mosaic augmentation, 
were applied during training to enhance the model’s robustness 
and generalization capabilities against variations encountered in 
real-world construction environments.

Evaluation Metrics
The performance of the trained YOLOv8 models was evaluated 
using standard instance segmentation metrics, including: 

•	 Precision: The proportion of correctly predicted positive 
instances among all instances predicted as positive.

•	 Recall: The proportion of correctly predicted positive 
instances among all actual positive instances.

•	 mAP50: The mean Average Precision (mAP) calculated at 
an Intersection over Union (IoU) threshold of 0.5. These 
metrics measures the average precision across all classes 
and provides an overall assessment of the model’s detection 
and segmentation accuracy.

•	 mAP50-95: The mAP calculated across IoU thresholds 
ranging from 0.5 to 0.95 with a step size of 0.05. This metric 
provides a more comprehensive evaluation of the model’s 
performance across different levels of localization accuracy.

Model Evaluation and Comparison - First Evaluation
For this initial evaluation, we compared two Transfer Learning 
(TL) approaches using YOLOv8. The first model (COCO TL) 
was initialized with weights pre-trained on the COCO dataset 
[83]. The second model (Synthetic TL) used weights from a 
YOLOv8 model we pre-trained on the MEP-SEG synthetic 
dataset. These pre-trained models were then fine-tuned on real-
world data extracted from MEP-REAL. We created two versions 
of the MEP-REAL dataset for fine-tuning: a small dataset (S, 
45 training images, 19 validation images) and a medium dataset 
(M, 131 training images, 43 validation images). The fine-tuning 
process was identical for both models and datasets. Fine-tuning 
typically converged after around 200 epochs (20 minutes of 
training) using the COCO TL model and around 180 epochs for 
the Synthetic TL model. Performance was evaluated on a held-
out test set of 40 unseen images.

Test results are summarized in Table 2.

Table 2: Performances on COCO vs. synthetic TL on small 
(S) and medium (M) real datasets

Metrics COCO TL Synthetic TL
S dataset box mask box mask

Precision (%) 43 51 66 64
Recall (%) 43 34 47 46

mAP50 (%) 42 38 53 49
mAP5095 (%) 26 19 37 30
M dataset box mask box mask
Precision (%) 52 52 69 63
Recall (%) 45 42 40 38
mAP50 (%) 43 41 47 43
mAP5095 (%) 29 24 30 24

As we can see on the S dataset, the model pre-trained on our 
synthetic data outperforms the one pre-trained on COCO in all 
metrics. Moreover, the gap between box and mask in terms of 
precision and recall is smaller with the synthetic TL method, 
suggesting that the model better detects the outline of objects. 
Looking at the results on the M dataset, we observe a less 
significant difference between the two methods, indicating 
that the more real data available, the less relevant it is to use a 
synthetic dataset for a pre-trained model. In conclusion, using 
a synthetic pre-trained model showed promising results for 
transferring knowledge to a small real dataset.

Model Evaluation and Comparison - Second Evaluation
For the second evaluation, we built four training datasets to 
explore the benefit of augmenting synthetic data with a small 
amount of real data:

• A purely real dataset comprising 142 real images from MEP-
REAL.

• A purely synthetic dataset containing 500 carefully selected 
synthetic images from MEP-SEG to ensure they were the most 
representative.

• A mixed training dataset of 550 images, containing 500 
synthetic images and 50 real images, i.e., 10% of the 500 
synthetic images.

• A mixed training dataset of 600 images, containing 500 
synthetic images and 100 real images, i.e., 20% of the 500 
synthetic images.

In each training dataset, 80% of the images were used for training 
and the remaining 20% for validation. The YOLOv8 model pre-
trained on the COCO image dataset served as the basis, and the 
same training strategy as in the previous evaluation was used.
The evaluation of the precision measure on 50 new real test 
images from all training datasets is presented in Table 3.

Table 3: Performance of the YOLOv8 model trained on 
different datasets

Training dataset Precision (%)
Real 77 75
Synthetic 30 29
Synthetic +10% real 71 69
Synthetic +20% real 80 79

In each case, 80% of the images were used for training and 20% 
for validation. A YOLOv8 model pre-trained on the COCO 
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dataset served as the base, and the training strategy described 
in Section 4.2.1 was applied consistently. Performance, 
evaluated in terms of precision on 50 unseen real test images, 
is presented in Table 3. As expected, the model trained only on 
synthetic data showed poor generalization to real images (30% 
box, 29% mask precision). The model trained only on the 142 
real images achieved respectable baseline performance (77% 
box, 75% mask). Most importantly, incorporating even a small 
amount of real data into the synthetic training set resulted in 
significant improvements. Adding just 50 real images (Mixed 
10%) significantly increased accuracy (71% box, 69% mask), 
approaching the performance of the all-real model despite using 
fewer real images overall in its source pool. The Mixed-20% 
model, achieved the highest precision (80% box, 79% mask), 
surpassing the performance of the model trained on the larger 
dataset of 142 purely real images. This result strongly suggests 
the efficiency and effectiveness of the use of synthetic data. 
By strategically combining a large synthetic dataset with a 
relatively small amount of real data (in this case, 100 images), 
we can achieve superior performance compared to relying solely 
on a larger collection of manually annotated real-world images.  
In relation to the next section of this chapter, the model using 
the combination of 500 synthetic images and 100 real images is 
retained (Mixed-20%).

For this model, the training and validation losses for both 
bounding box regression (box loss) and segmentation (seg 
loss), are illustrated in Figure 6. The training losses consistently 
decreased and converged, indicating that the model was 
effectively learning from the training data. The validation losses 
also decreased initially but exhibited more fluctuation and 
plateaued after a certain number of epochs, suggesting the onset 
of diminishing returns or potential overfitting.

Figure 6: Training and validation loss curves for the YOLOv8 
model (Mixed20% dataset). Top row: Training box loss and 
segmentation loss. Bottom row: Validation box loss and 
segmentation loss. The plots show convergence during training 
and the plateauing of validation loss used for early stopping.

Furthermore, after training, an analysis was performed to determine 
the optimal confidence threshold for balancing precision and 
recall, thereby maximizing the F1 score. Figure 7 shows the F1 
score for each class and the average across all classes as a function 
of the confidence threshold, evaluated on the validation set. Based 
on this analysis, an optimal confidence threshold of 0.365 was 
identified, achieving the highest average F1 score of 0.67. This 
threshold was subsequently used during inference and evaluation 
to filter detections and ensure a balanced performance.

Figure 7: F1 score versus confidence threshold for each class 
and averaged across all classes (evaluated on the validation set). 
The plot indicates that the maximum average F1 score (0.67) is 
achieved at a confidence threshold of 0.365.

Qualitative Results
Beyond quantitative metrics, qualitative analysis of the model’s 
predictions on unseen real-world images provides valuable 
insights into its practical performance. Figures 8 and 9 present 
representative examples from the best-performing model 
(Mixed-20%), illustrating both successful inferences and 
common failure modes, respectively.

Figure 8 demonstrates the model’s capability to accurately 
detect and segment various MEP components across a range 
of challenging conditions often encountered on construction 
sites. As detailed in the caption, the model shows robustness to 
complex layouts, varying scales, visual clutter, different camera 
qualities, and difficult lighting scenarios (Fig. 8a-f). These 
successful examples validate the effectiveness of the mixed 
synthetic and real data training approach for achieving good 
generalization in practical settings.

Figure 8: Qualitative examples of successful instance 
segmentation results using the YOLOv8 model (Mixed-20%) on 
diverse real-world indoor construction scenes. (a) Scene with a 
high ceiling, showcasing detection of ducts and radiant panels. 
(b) Scene demonstrating differentiation between pipes and ducts. 
(c) Accurate detection of multiple fan coil units amidst clutter. 
(d) Performance on an image captured with a lower-end camera. 
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(e) Detection in a long-range scene with high contrast lighting. 
(f) Robustness to complex and varied background structures.

Conversely, Figure 9 highlights persistent challenges and 
typical failure modes. As described in the caption, these include 
difficulties with severe occlusion (Figure 9b), missed detections 
of smaller or less distinct objects (Figure 9a), misclassifications 
between visually similar items (Figure 9c), incomplete 
segmentations (Figure 9d), and sensitivity to specific material 
properties (e.g., black insulation, Figure 9e) or extreme lighting 
conditions (Figure 9f). These limitations point towards the need 
for further improvements, particularly in enhancing training 
data diversity and model robustness to handle edge cases and 
complex environmental factors.

Overall, the qualitative results provide a balanced perspective, 
confirming the model’s strong potential for ICPM while clearly 
identifying areas for future refinement to increase reliability 
across the full spectrum of real-world construction scenarios.

While demonstrating strong performance in many typical 
construction scenarios, the identified failure modes pinpoint 
specific areas where targeted improvements in data and modeling 
can lead to enhanced reliability and broader applicability of the 
proposed ICPM system.

Figure 9: Qualitative examples of failure cases and limitations 
observed with the YOLOv8 model (Mixed-20%) on real-world 
indoor construction images. (a) Undetected pipes (false negatives) 
alongside correctly detected ducts. (b) Pipes heavily occluded 
by cable routing frames are missed. (c) Misclassification of a 
light fixture as an air vent. (d) Incomplete segmentation masks 
for detected radiant panels. (e) Failure to detect pipes covered 
in black insulation. (f) Reduced detection and segmentation 
accuracy under challenging lighting conditions (glare and 
shadow).

Mask Alignment Analysis
To quantify and visualize the discrepancies between predicted 
and ground truth masks, and to evaluate the effectiveness of 
different alignment strategies, we conducted a comparative 
analysis of centroid-based and affine transformation alignment 
methods. As described in Section 3.4.3, centroid-based alignment 
offers computational efficiency but is less precise, while affine 
transformation alignment (using the ECC algorithm) provides 
higher accuracy at the cost of increased computational time.

This analysis was carried out on a new dataset acquired as 
part of the Avignon Archive Centre project, which provides a 
controlled environment for evaluating alignment performance.  

This database, consisting of 133 pairs of images, represents a 
total of 829 object occurrences divided into 5 classes: 79 fan 
coils, 175 ducts, 82 diffusers, 593 pipes and 40 radiant panels.

The analysis of these images by our algorithm identified 28% 
of the objects present in the scene (approximately 267 objects), 
confirming the presence of these elements on the construction 
site at the time of data acquisition. For each detected object, a 
comparison between the predicted mask and the corresponding 
ground truth mask was performed, including both alignment 
methods: centroid-based and affine transformation-based. This 
process generated a total of 450 compared alignments. The 
results, averaged across all samples, are presented below (Table 
4):

Table 4: Average results of mask comparison using centroid-
based and affine transformation alignment on the Avignon 
Archive Center Dataset

Metric Centroid Affine
Distance Centroids (px) 1 24
IoU 0.40 0.64
Dice Coefficient 0.54 0.76
Time (ms) 30 2110

Centroid-based alignment, which is very fast (30 ms on 
average), offers limited alignment accuracy, with an IoU of 
0.40 and a Dice coefficient of 0.54. On the other hand, affine 
alignment significantly improves the alignment quality, with 
an IoU of 0.64 and a Dice coefficient of 0.76. However, this 
precision improvement comes at the cost of a significantly higher 
computation time (2.1 seconds on average), approximately 70 
times slower than centroid-based alignment.

It is noteworthy that the centroid distance is significantly 
higher for affine alignment (24px versus 1px for centroid-
based alignment). This can be explained by the fact that affine 
transformation, unlike the simple translation performed by 
centroid-based alignment, includes rotations and scale changes. 
These transformations can shift the centroid of the aligned 
predicted mask, even if the overlap with the ground truth mask is 
optimal. Consequently, centroid distance is not a relevant metric 
for evaluating the quality of affine alignment. IoU and the Dice 
coefficient, however, remain reliable indicators of the overlap 
quality between masks.

This experiment on a larger dataset highlights the performance 
and limitations of the proposed alignment methods. It confirms 
that affine alignment, although more computationally expensive, 
provides significantly higher accuracy. The choice of alignment 
method will thus depend on application constraints: prioritizing 
speed with centroid-based alignment or precision with affine 
alignment. The analysis of metrics across the entire dataset allows 
the identification of problematic cases and guides improvements 
in the segmentation model and alignment algorithms. It also 
validates the potential of the approach for work inspection and 
quality control, although optimizations are necessary for real-
time use on devices such as the HoloLens 2.
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User study and Acceptability Assessment
To comprehensively evaluate the practical usability, user 
acceptance, and perceived value of the AR-integrated ICPM 
system, a user study was conducted with a panel of 21 construction 
professionals. This section summarizes the key findings from 
this study, providing insights into the user experience, perceived 
benefits, and potential challenges associated with adopting the 
proposed technology in real-world construction settings.

Methodology
The user study employed a mixed-methods approach, combining 
quantitative and qualitative data collection techniques to provide 
a holistic understanding of user perspectives. The methodology 
comprised three main components:

•	 Online questionnaire: A quantitative questionnaire was 
administered to a panel of 21 construction professionals, 
all of whom had prior experience using the NEXT-BIM 
solution and the HoloLens 2 headset. The questionnaire 
utilized Likert scale questions (1-strongly disagree to 5- 
strongly agree) to assess usability, acceptability, comfort, 
and perceived effectiveness, complemented by open-
ended questions for gathering qualitative feedback and 
suggestions.

•	 Semi-structured interviews: In-depth, semi-structured 
interviews were conducted with a subset of 10 questionnaire 
participants, selected to represent diverse roles and 
experiences within the construction industry. These 
interviews explored the user experience in more detail, 
looking at perceived advantages and disadvantages, 
integration challenges and recommendations for 
improvement.

•	 On-site observations: Throughout the research project and 
during on-site testing of the AR-integrated ICPM system, 
the researchers collected observational data, acting as both 
users and observers. These observations provided contextual 
insights into real-world usage scenarios, user interactions 
with the system, and the challenges and opportunities 
encountered in practical implementation.

This mixed-methods approach allowed for triangulation of 
data, enhancing the validity and reliability of the user study 
findings. The questionnaire provided quantitative measures of 
user perceptions, while the interviews and observations offered 
rich qualitative insights into the nuances of user experience and 
the practical implications of adopting the AR-integrated ICPM 
system.

Participant Demographics and NEXT-BIM Usage
Table 5 summarizes the demographics and NEXT-BIM usage 
patterns of the study participants. The majority of participants 
(47.6%) had used NEXT-BIM for over a year, indicating 
substantial experience with the platform. A further 28.6% had 
used it for between 6 months and a year. In terms of usage 
frequency (N=19), the most common response was” about once 
a month” (42.1%), followed by” about once a week” (36.8%). 
Participants represented a variety of roles, with BIM engineers 
(38.1%) being the largest group, followed by site managers 
(23.8%). This diverse range of roles and experience levels 
provides a representative sample of potential users.

Table 5: User Study Demographics and NEXT-BIM Usage 
(N=21, except where noted)

Characteristic Percentage
NEXT-BIM Usage Duration
Less than 3 months 9.5%
Between 3 and 6 months 14.3%
Between 6 months and 1 year 28.6%
More than 1 year 47.6%
NEXT-BIM Usage Frequency (N=19)
Daily 15.8%
About once a week 36.8%
About once a month 42.1%
Less than once a month 5.3%
Primary Role on Construction Sites
Site Manager 23.8%
Works Supervisor 9.5%
Quality Inspector 9.5%
BIM Engineer 38.1%
Design Office Manager 14.3%
Study Technician 0%
Quality Control Manager 4.8%

Quantitative Results
Analysis of the Likert scale responses, presented in Table 6, 
reveals a generally high level of user acceptance and perceived 
usefulness of the AR-integrated ICPM system. Regarding work 
efficiency (Question 4), a substantial majority of participants 
agreed (38.1%) or strongly agreed (52.4%) that the system 
enhanced their productivity. However, responses to the ease 
of integration into existing workflows (Question 1) were more 
divided. While 38.1% agreed and 4.8% strongly agreed with easy 
integration, a considerable 42.9% remained neutral, and 14.3% 
disagreed. This suggests that while the system is perceived as 
effective, further refinement may be necessary to optimize its 
integration with established construction processes.

Concerning usability, the system received overwhelmingly 
positive feedback. A significant portion of participants agreed 
(61.9%) or strongly agreed (28.6%) that the user interface 
was intuitive and easy to comprehend (Question 5). Similarly, 
a high proportion agreed (57.1%) or strongly agreed (33.3%) 
that the application was easy to utilize daily (Question 7). The 
initial training provided (Question 8) was deemed sufficient by a 
majority, with 57.1% agreeing and 23.8% strongly agreeing. The 
augmented reality visualization (Question 3) was also highly 
regarded, with 66.7% agreeing and 9.5% strongly agreeing 
on its clarity and ease of interpretation. This confirms the 
effectiveness of the AR component in presenting BIM models 
and instance segmentation results in a readily understandable 
manner. Concerning the application’s functionalities (Question 
6), 47.6% of participants agreed and 33.3% strongly agreed on 
their relevancy.

Conversely, the HoloLens 2 headset’s comfort during extended 
use (Question 2) received a more mixed assessment. Only 23.8% 
agreed and 19% strongly agreed regarding comfort, while 38.1% 
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remained neutral, and a combined 19% disagreed. This indicates 
a potential area for improvement or consideration regarding 
prolonged use in field settings.

Table 6: User Study Results: Questionnaire Responses (N=21)

Question
Disagree 

(1-2)
Neutral 

(3)
Agree 

(4)
Strongly 
Agree (5)

1. Easy integration 
into workflow

3 
(14.3%)

9 
(42.9%)

8 
(38.1%)

1 (4.8%)

2. HoloLens 2 
comfort (long 
periods)

4 (19%)
8 

(38.1%)
5 

(23.8%)
4 (19%)

3. Clear & easy AR 
visualization

0 (0%)
5 

(23.8%)
14 

(66.7%)
2 (9.5%)

4. Increased work 
efficiency

0 (0%) 2 (9.5%)
8 

(38.1%)
11 

(52.4%)
5. Intuitive & easy 
user interface

0 (0%) 2 (9.5%)
13 

(61.9%)
6 (28.6%)

6. Relevant app 
functionalities

0 (0%) 4 (19%)
10 

(47.6%)
7 (33.3%)

7. Easy to use daily
2 (9.6%) 1 (4.8%)

12 
(57.1%)

7 (33.3%)

8. Sufficient initial 
training

0 (0%) 4 (19%)
12 

(57.1%)
5 (23.8%)

Qualitative Insights
The semi-structured interviews and on-site observations 
yielded rich qualitative data, providing nuanced perspectives 
that complement the quantitative findings. A prominent theme 
emerging from the interviews was the substantial time savings 
afforded by the system. Participants consistently reported a 
reduction in the time required for on-site inspections compared 
to traditional manual methods. One construction manager, for 
instance, estimated a decrease in inspection time from half a 
day to approximately one hour, a compelling illustration of the 
potential efficiency gains.

Beyond time savings, participants frequently highlighted the 
system’s positive impact on communication and collaboration 
within the construction team. The AR visualization served 
as a shared, contextualized platform for discussing progress, 
identifying discrepancies, and coordinating corrective actions. 
This visual communication was perceived as a significant 
improvement over traditional reporting methods, facilitating 
clearer and more effective information exchange.

Furthermore, the integration of automated object detection and 
segmentation with the AR overlay was perceived to enhance 
the accuracy of progress monitoring and mitigate the risk of 
errors inherent in manual assessments. The ability to visually 
compare the as-built reality with the BIM model in real-time 
was considered a valuable asset for ensuring quality control and 
adherence to design specifications.

Despite the overwhelmingly positive feedback, participants 
also identified several challenges and limitations. Consistent 
with the quantitative findings, discomfort associated with 
prolonged use of the HoloLens 2 was a recurring concern. 
Additionally, the system’s performance was acknowledged 

to be contingent upon the quality and completeness of the 
underlying BIM model; incomplete or inaccurate models could 
limit the system’s effectiveness. Environmental factors, such as 
complex geometries, cluttered environments, and suboptimal 
lighting conditions, were also noted as potential impediments to 
optimal performance. Finally, while generally perceived as user 
friendly, the seamless integration of the system into pre-existing 
workflows was identified as an area requiring further attention 
and potential adaptation.

The user study results indicate a strong positive reception of the 
AR-integrated ICPM system among construction professionals. 
The high levels of agreement on efficiency gains, usability, and 
the value of AR visualization demonstrate the system’s potential 
to significantly improve progress monitoring practices. The 
mixed feedback on HoloLens 2 comfort, while a limitation, 
is consistent with broader user experiences with HMDs. The 
identified challenges, such as BIM model dependency and 
environmental factors, highlight areas for future development 
and refinement.

In conclusion, the user study provides valuable evidence for 
the practical usability, user acceptance, and perceived benefits 
of the AR-integrated ICPM system. The findings suggest that 
the proposed methodology has strong potential for adoption in 
the construction industry, offering significant improvements in 
efficiency, accuracy, and communication.

Discussion
Summary of Findings
The experimental evaluations and user study conducted in this 
research provide compelling evidence for the effectiveness 
and practical potential of the proposed AR-integrated ICPM 
methodology. The key findings demonstrate the successful in 
tegration of multiple technologies to address the challenges of 
traditional progress monitoring.

The MEP-SEG synthetic dataset proved to be a valuable 
resource for training high-performing DL models. YOLOv8 
models trained on this synthetic data, especially when fine-tuned 
with a small amount of real-world data, achieved comparable or 
superior performance to models trained solely on limited real-
world datasets. This highlights the potential of synthetic data to 
overcome the critical data scarcity bottleneck in construction 
applications.

Furthermore, the integration of the trained YOLOv8 model into 
the NEXT-BIM AR application on the HoloLens 2 successfully 
enabled real-time, on-site progress monitoring. The AR system 
provided users with an intuitive and immersive interface for 
comparing planned and built conditions, facilitating efficient and 
accurate progress assessment through the direct visualization of 
BIM models and instance segmentation results.

The implementation and evaluation of mask alignment 
methods (centroid-based and affine transformation) provided 
valuable tools for quantifying and visualizing discrepancies. 
Affine transformation alignment, while computationally more 
demanding, offered superior accuracy, enabling a more refined 
analysis of deviations from the BIM model. This highlights the 
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importance of choosing appropriate alignment strategies based 
on the specific application requirements.

Finally, the user study confirmed a generally positive perception 
of the AR-integrated system among construction professionals. 
Participants emphasized the system’s usability, perceived 
usefulness, and its potential to improve efficiency, accuracy, and 
communication in progress monitoring. The AR visualization 
and real-time feedback were particularly well-received, 
demonstrating the practical value and user friendliness of the 
proposed solution.

These findings collectively demonstrate the successful 
development and validation of an innovative AR-integrated 
ICPM methodology, effectively leveraging BIM, synthetic 
data, and DL to address key challenges in construction progress 
monitoring.

Limitations
While the proposed AR-integrated ICPM methodology 
demonstrates promising results, it is crucial to acknowledge 
certain limitations inherent in the current study. These 
limitations define critical areas for future research and 
development, ultimately contributing to the enhanced 
robustness, generalizability, and practical applicability of the 
approach. A primary concern lies with the dataset realism and 
the persistent domain gap. Despite the photorealistic nature 
of the MEP-SEG synthetic dataset, a discernible difference 
remains between the visual characteristics of synthetic and real-
world constructionsite imagery. Although domain adaptation 
techniques were employed, further investigation is required to 
fully bridge this reality gap and bolster the model’s resilience to 
the complexities and variations encountered in authentic scenes. 
Factors such as sensor noise, fluctuating lighting conditions, 
and the un predictable arrangement of objects in real-world 
environments may still present challenges to the model’s 
generalization capabilities.

Furthermore, the accuracy and reliability of the proposed 
ICPM methodology are intrinsically linked to the quality and 
completeness of the BIM models utilized for both synthetic 
data generation and on-site comparison. Incomplete, inaccurate, 
or outdated BIM models can significantly limit the system’s 
effectiveness and introduce discrepancies between the 
virtual and real-world representations. Consequently, further 
research should explore automated methods for validating and 
correcting BIM models to ensure data integrity and reliability 
for ICPM applications. The computational constraints of AR 
devices also pose a significant challenge. While the on-device 
deployment of the YOLOv8 model on HoloLens 2 enables 
real-time performance, it is inherently constrained by the 
limited computational resources of the mobile AR device. The 
complexity of the DL model, the resolution of the input images, 
and the object density within the scene can all impact the frame 
rate and responsiveness of the AR application, particularly within 
highly cluttered or complex indoor environments. Optimizing the 
model architecture, exploring model compression techniques, 
and leveraging hardware acceleration are therefore essential 
for ensuring seamless real-time performance on resource-
constrained AR devices.

The scope of the current evaluation also warrants further 
attention. While the on-site evaluation of the AR-integrated 
ICPM system provided valuable user feedback and qualitative 
insights, it was limited to a preliminary study involving a single 
construction professional and specific types of construction 
sites. More extensive user studies, encompassing a larger and 
more diverse cohort of users and a broader range of construction 
projects and scenarios, are necessary to comprehensively assess 
the usability, acceptability, and practical impact of the proposed 
methodology in real-world settings. Finally, the study’s focus 
on MEP components, while pertinent to indoor construction 
progress monitoring, represents only a subset of the building 
elements relevant to overall project management. Expanding 
the methodology to encompass a wider spectrum of construction 
elements, including structural components, architectural finishes, 
and temporary works, would enhance the comprehensiveness 
and applicability of the AR-integrated ICPM system for holistic 
construction progress assessment.

Conclusion
This research explored a novel AR-integrated methodology 
for indoor construction progress monitoring, combining BIM, 
synthetic data generation, Deep Learning (DL)-based instance 
segmentation, and AR visualization. Experimental validation 
and a user study demonstrated the initial feasibility and 
potential of the system to contribute to more automated progress 
monitoring. Key contributions include a scalable BIM-based 
synthetic data pipeline, the adaptation of a YOLOv8 model 
for MEP component segmentation, seamless integration with a 
HoloLens 2 AR application, and a preliminary evaluation.

Findings suggest the value of synthetic data for training robust 
DL models and the promise of the AR-integrated ICPM system 
for more efficient and reliable progress monitoring. However, 
it is important to acknowledge limitations related to synthetic 
dataset realism, reliance on accurate BIM models, and constraints 
inherent to AR devices. This research establishes a foundational 
step towards exploring automated, data-driven construction 
progress monitoring.

Future research will focus on addressing current limitations 
by improving synthetic data realism, exploring advanced 
domain adaptation techniques, optimizing the DL model for 
AR device performance, expanding the system’s scope beyond 
MEP components, and conducting more extensive real-world 
deployments. This work represents an early step towards a 
more automated, data-driven approach to construction progress 
monitoring, with the potential to contribute to more efficient and 
accurate construction projects.
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