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ABSTRACT

Manual inspection of indoor construction sites for progress monitoring is time-consuming, error-prone, and inefficient. Automated solutions
using Deep Learning (DL) and Augmented Reality (AR) offer significant potential, but are hampered by the scarcity of large labeled
datasets, especially for complex indoor environments. This paper presents a novel and automated methodology for Indoor Construction
Progress Monitoring (ICPM) that addresses this data bottleneck by leveraging Building Information Modeling (BIM) and synthetic
data. Our approach uses a photorealistic graphics engine to generate a large, annotated synthetic dataset of Mechanical, Electrical, and
Plumbing (MEP) components within BIM environments. A YOLOVS instance segmentation model, enhanced with domain adaptation
techniques, is trained on this synthetic data and integrated with an AR application on HoloLens 2 for real-time on-site progress monitoring.
Experiments demonstrate that the proposed synthetic data-powered model achieved a substantial improvement in mAP50 compared to
models trained on limited real-world data. A preliminary on-site validation further highlights the practical potential of the AR-integrated
system for efficient and reliable ICPM, demonstrating a feasible path towards accessible and user-friendly automated inspection tools that
can be readily adopted by construction professionals on real-world sites.

Keywords: Building Information Modeling (BIM), Synthetic
Data, Deep Learning, Augmented Reality (AR), Progress
Monitoring, Indoor Construction, User Study

Introduction

Background and Problem Statement

The Architecture, Engineering, and Construction (AEC) industry
is under increasing pressure to improve efficiency accuracy, and
safety amidst complex project demands [1]. Indoor Construction
Progress Monitoring (ICPM) is vital for ensuring adherence
to project schedules and budgets [2]. However, traditional
ICPM methods, heavily reliant on manual inspections and
documentation, pose significant challenges. These methods are
inherently labor-intensive, time-consuming, and susceptible
to human error [3]. This is particularly problematic in modern
construction, where complex Mechanical, Electrical, and

Plumbing (MEP) systems are prevalent [4]. The dynamic
nature of construction sites, marked by frequent changes and
unforeseen events, further compounds these difficulties, often
rendering manual reports obsolete and leading to inaccurate
progress assessments [5].

Building Information Modeling (BIM) offers a centralized
digital platform for project information [6]. However, realizing
BIM’s full potential for on-site ICPM requires bridging the gap
between the digital model and the physical site. Augmented
Reality (AR) shows promise for visualizing BIM data on-
site, facilitating comparisons between as-designed and as-
built conditions [7]. Critically, existing AR-based solutions
often require manual alignment of the BIM model and rely on
subjective visual inspection, limiting automation and accuracy,
particularly for complex MEP components [8].
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Computer Vision (CV) and Deep Learning (DL), specifically
instance segmentation, offer the potential to automate ICPM
tasks [9]. Instance segmentation is particularly well-suited
for ICPM of MEP systems due to its ability to detect and
delineate individual components, even in cluttered and
occluded environments. However, a major bottleneck for DL in
construction, especially for indoor MEP systems, is the scarcity
of large, labeled datasets [10]. Collecting and annotating such
data is costly and time-consuming. Therefore, a need exists for a
fully automated, data-efficient, and AR-integrated ICPM system
that can accurately detect and segment MEP components in
complex indoor environments, bridging the gap between digital
design and physical construction.

Research Objectives and Contributions

To address the limitations of current ICPM methods, this paper
proposes a novel approach for automated ICPM, leveraging the
synergies of BIM, synthetic data, DL, and AR. The research
objectives and primary contributions are:

*  Develop astreamlined and automated pipeline for generating
large-scale, photorealistic, and accurately annotated
synthetic datasets of indoor construction scenes, specifically
targeting MEP components. This pipeline addresses the
data scarcity bottleneck and provides a scalable solution for
future research. The generated dataset, MEP-SEG, is made
publicly available [11].

e Adapt and optimize a state-of-the-art DL model, specifically
YOLOvVS, for accurate instance segmentation of MEP
components in complex indoor construction environments.
This objective focuses on achieving high precision and
robustness in detecting and identifying critical building
elements using a combination of synthetic pre-training and
fine-tuning on real-world data.

* Integrate the trained DL model with a commercially available
mobile AR platform for real-time, on-site construction
progress monitoring and BIM-based comparison. This
integration aims to create a practical and user-friendly tool
for construction professionals.

e Conduct rigorous experimental validation using both
synthetic (MEP-SEG) and real-world (MEP-REAL)
datasets from diverse construction sites. This evaluation
includes ablation studies to assess the impact of domain
adaptation techniques and different ratios of synthetic and
real data, ensuring the robustness, generalizability, and
practical applicability of the methodology.

*  Evaluate the system’s usability, acceptability, and perceived
effectiveness through a user study with 21 construction
professionals, employing quantitative questionnaires and
qualitative interviews. This provides practical insights into
the real-world applicability and potential benefits of the
proposed AR-integrated ICPM system.

This research advances the field of automated construction
progress monitoring by providing a validated and innovative
methodology that addresses key limitations of existing methods,
offering significant improvements in accuracy, -efficiency
and automation. Furthermore, by integrating a commercially
available AR solution and making the synthetic dataset public,
it contributes to the adoption of advanced digital technologies in
the AEC industry.

B. Augmented Reality Integration (§ 3.4)
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Figure 1: Overview of the proposed approach
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The remainder of this paper is structured to detail the proposed
methodology, experimental validation, and key findings.
Following this introduction, Section 2 provides a comprehensive
review of the relevant literature on automated ICPM, focusing
on the application of CV, DL, AR, and synthetic data generation.
Section 3 elaborates on the proposed methodology, detailing the
BIM-based synthetic data generation pipeline, the architecture
and training of the YOLOVS instance segmentation model, and
the integration of this model with an AR application for real-time
ICPM. Section 4 presents a detailed account of the experimental
setup, results (including evaluations on both synthetic and real-
world datasets), ablation studies, mask alignment analysis, and
user feedback from a study with construction professionals.
Section 5 discusses the key findings, implications, limitations,
and potential future directions of this research. Finally, Section
6 concludes the paper by summarizing the main contributions
and highlighting the broader impact of this work on automated
ICPM.

This paper significantly expands upon the foundational
work presented in our previous conference paper [12],
which introduced the BIM-based synthetic data generation
pipeline. Specifically, this article provides a more detailed and
comprehensive presentation of the methodology. Furthermore,
this manuscript presents novel research outcomes, including the
seamless integration of the trained DL model with an augmented
reality application for on-site deployment, a thorough evaluation
of mask alignment strategies, and a comprehensive assessment
of the system’s usability and user acceptance through detailed
user studies and real-world experimentation.

Literature Review

Progress Monitoring in Construction

Ineffective progress monitoring is a barrier to successful
project delivery because it prevents timely detection of
deviations from planned schedules and budgets [13]. Traditional
methods, including manual site inspections and paper-based
documentation, are not only inefficient, but also introduce
subjectivity and increase the likelihood of errors [14]. The
complexity and dynamism of indoor construction environments,
especially those with dense MEP installations, make
comprehensive and accurate manual monitoring practically
unsustainable [15,16]. As a result, delays in reporting, reactive
project management and increased risk of cost overruns and
schedule delays are common outcomes [17]. The need for
automated and reliable solutions to address these challenges is
therefore essential. To address these challenges, research has
explored various automated and semi-automated technologies
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[18]. Reality capture techniques, such as laser scanning and
photogrammetry, offer accurate 3D representations of as-
built conditions [19-21]. These methods enable Scan-vs-BIM
comparisons for deviation analysis [22-24]. However, they often
require specialized equipment, skilled operators, and extensive
post processing, hindering real-time, on-site application and
scalability [25]. Sensor-based tracking systems (RFID, UWB,
BLE, GPS) provide real-time data on material flow, equipment
utilization, and personnel location [26-30]. While valuable for
resource management, these systems do not directly address
the visual assessment of construction progress, particularly
for complex MEP installations. Computer vision (CV) and
Deep Learning (DL) are increasingly being applied in the AEC
industry to automate tasks such as progress monitoring, safety
inspection, and defect detection [31]. Specifically, for ICPM,
DL-powered CV offers the potential to automate the visual
assessment of construction progress, overcoming the subjectivity
and labor-intensive nature of manual inspections [32]. Key CV
techniques relevant to ICPM include object detection, semantic
segmentation, and instance segmentation. Object detection
has been used to identify and locate construction elements,
such as MEP components, equipment, and workers [33,34].
Semantic segmentation provides a pixel-level classification
of the scene, enabling the identification of different building
materials and elements [35]. Instance segmentation combines
the benefits of both, detecting and delineating individual object
instances, even with occlusions, making it particularly suitable
for tracking MEP components in complex indoor environments
[36,37]. Various Convolutional Neural Network based (CNN)
models have been explored for these tasks, including the You
Only Look Once (YOLO) family of object detectors [38,39],
Mask R-CNN [40,41], and, more recently, Vision Transformers
(ViTs) [42,43]. While these models have shown promising
results, their application to ICPM, particularly for indoor MEP
systems, is often hampered by the lack of large, labeled datasets
[44]. The complexity, clutter, and occlusions characteristic of
indoor construction environments further complicate the task of
accurate object recognition and segmentation. Existing research
has applied CV and DL to structural element monitoring [45-
47] and MEP system progress tracking [48]. However, many of
these approaches rely on limited real-world data, hindering their
generalizability and robustness in diverse construction scenarios.
The need for extensive manual annotation of real-world images
further limits the scalability of these methods. This data scarcity
challenge motivates the exploration of synthetic data generation
techniques, as discussed in the next section.

Synthetic Data Generation

Synthetic data generation offers a promising solution to the
data scarcity challenge in construction, enabling the creation
of large, labeled datasets without costly and time-consuming
manual annotation [49]. This is particularly crucial for training
robust DL models for complex tasks like instance segmentation
of MEP components in cluttered indoor environments [50].
Various methods exist for generating synthetic data, including
graphics engine-based approaches and hybrid methods that
combine synthetic and real-world data [51-53]. However, for
construction progress monitoring, BIM-based synthetic data
generation offers significant advantages [54]. BIM models
inherently contain rich geometric and semantic information
about building elements, providing a readily available source

for creating realistic and accurately labeled virtual construction
environments [55]. BIM-based approaches typically involve
importing BIM models into graphics or game engines
(e.g., Unreal Engine, Unity, Isaac Sim), configuring virtual
environments with realistic materials and lighting, and rendering
synthetic images from various viewpoints [56]. Crucially, the
semantic information in BIM models allows for automated
generation of ground truth annotations, including object classes,
instance segmentation masks, and depth maps, eliminating the
need for manual labeling [57]. This automated annotation is a
key advantage, enabling the creation of large-scale datasets with
minimal effort [58]. Our approach builds upon this foundation,
utilizing a streamlined pipeline and focusing specifically on the
detailed representation of MEP components within complex
indoor scenes [59]. Despite the advantages of synthetic data, a
key challenge is the” reality gap” - the difference in appearance
and characteristics between synthetic and real-world images
[60]. DL models trained solely on synthetic data may exhibit
limited generalization performance when deployed in real-world
scenarios. Therefore, domain adaptation techniques are crucial
for bridging this gap and improving the transferability of models
[61]. These techniques aim to reduce the discrepancy between
the synthetic (source) and real-world (target) domains, enabling
models trained on synthetic data to perform well on real-world
images [62]. Common approaches include Unsupervised
Domain Adaptation (UDA) using adversarial training [63],
and Semi-Supervised Domain Adaptation (SSDA) leveraging a
small amount of labeled real-world data [64].

Augmented Reality in Construction

Augmented Reality (AR) offers significant potential for
enhancing construction processes by overlaying digital
information onto the real-world view [65,66]. In the context
of progress monitoring, AR enables direct visual comparisons
between the as-planned BIM model and the as-built reality,
facilitating the identification of discrepancies and deviations
[67]. Various AR devices, including head-mounted displays
(HMDs) like Microsoft HoloLens and Magic Leap, and
handheld devices running ARKit or ARCore, have been
explored for construction applications [68, 69]. The choice of
device depends on factors such as user mobility, environmental
conditions, and the required level of immersion [70]. Several
studies have demonstrated the use of AR for on-site progress
monitoring. For example, Martins et al. [71] proposed an AR-
based framework for bridge inspection, while Kopsida and
Brilakis [72] developed a system for real-time volume-to-plane
comparisons. More recent work includes integrated systems
combining AR with other technologies like 3D scanning and
robotics for remote inspection and monitoring [73,74]. However,
a key limitation of many existing AR-based progress monitoring
systems is their reliance on manual alignment of the BIM model
with the real-world scene and visual inspection for discrepancy
detection [75]. This process can be time-consuming, subjective,
and prone to errors [76]. Furthermore, many systems lack
integration with automated object recognition and segmentation
capabilities, limiting their ability to provide quantitative
progress data and detailed analysis of specific building elements,
especially complex MEP systems [77]. Our work addresses
these limitations by integrating a deep learning-based instance
segmentation model with an AR platform, enabling automated
detection and segmentation of MEP components and facilitating
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a more objective and efficient comparison between the BIM
model and the as-built reality. This integration of DL-powered
object recognition with AR visualization represents a significant
step towards more automated and data-driven construction
progress monitoring.

Methodology

Overview of the Proposed Approach

This research introduces a novel, integrated methodology
for automated ICPM. The approach leverages the synergistic
combination of BIM, synthetic data, DL, and AR to create a
practical, efficient, and robust system for real-time, on-site
progress assessment. (Figure 1).

The core of the methodology is a three-stage process. First, alarge-
scale, labeled synthetic dataset of indoor construction scenes,
specifically focusing on MEP components, is automatically
generated using existing BIM models and a photoreal istic
graphics engine (NVIDIA Isaac Sim). This addresses the critical
data scarcity challenge hindering DL-based ICPM (Figure 1
A). Second, a state-of-the-art instance segmentation model,
YOLOVS, is trained on this synthetic dataset and enhanced
with a real images dataset to improve its robustness and
generalizability to real-world construction sites (Figure 1 B).
Third, the trained DL model is integrated into a commercially
available mobile AR application, NEXT-BIM1, designed for the
HoloLens 2. NEXT-BIM collaborated on this research project,
providing essential support with their expertise in BIM and
AR, with the goal of integrating the developed technology into
their tools in the future. This AR application enables real-time,
onsite visualization of BIM models and instance segmentation
results overlaid onto the physical environment (Figure 1 C).
This AR application also facilitates on-site progress comparison
by superimposing the DL model’s predictions onto the BIM
model view, allowing inspectors to visually assess alignment
and identify discrepancies. The integrated system is rigorously
evaluated on both synthetic and real-world datasets, assessing
accuracy, robustness, and user acceptance. The subsequent
sections detail each stage of this methodology.

Synthetic Data Generation

Our methodology hinges on the automated generation of a
large, diverse synthetic dataset to train robust DL models for
ICPM, reducing dependence on scarce labeled real-world data.
The pipeline leverages BIM models’ geometric and semantic
richness alongside NVIDIA Isaac Sim’s photorealistic rendering
capabilities. It consists of key steps including BIM model
preparation and virtual environment setup.

BIM Model Preparation

The process begins with selecting and preparing BIM models
representing indoor construction environments such as offices,
laboratories, and commercial spaces (Figure 2). To ensure
relevance for MEP system ICPM, a filtering process isolates
essential MEP components (e.g., ducts, pipes, cable trays, HVAC
units) while removing non-essential architectural elements. This
optimization preserves computational resources and geometric
fidelity.

Using BIM software’s built-in functionalities, models are
reviewed and adjusted to maintain compatibility with the

graphics engine. Simplifications are made where necessary to
optimize rendering performance without compromising the
accuracy of MEP components.

Virtual Environment Setup

The prepared BIM models are imported into NVIDIA Isaac Sim;
a high-fidelity simulation platform built on NVIDIA Omniverse.
Isaac Sim is selected for its advanced rendering capabilities, Python
scripting automation, and support for BIM data manipulation.

To enhance photorealism, materials and textures are assigned using
the NVIDIA Omniverse API (Application Programming Interface,
employing physically-based rendering materials that accurately
represent construction materials such as metal, concrete, plastic,
and insulation. MEP components are given specific textures (e.g.,
galvanized steel for ducts, copper for pipes) to improve realism.

Lighting is configured to simulate both natural and artificial
illumination. Sun and sky models replicate daylight conditions,
while artificial lighting is adjusted to match fixtures present
in BIM models. Variations in intensity and color temperature
introduce diversity, mimicking real-world site conditions.

To replicate real construction environments, randomized scene
clutter is introduced, including objects like tools, scaffolding,
and debris. These elements create occlusions, challenging the
DL model to accurately detect and segment MEP components
under varying conditions, thereby bridging the gap between
synthetic and real-world data.

Figure 2: Snapshots of three BIM projects imported into the
graphics engine.

Virtual Camera Configuration

To capture diverse viewpoints of the virtual construction scenes,

we configure a virtual camera within Isaac Sim and define a set

of camera poses that mimic realistic on-site inspection paths.

The virtual camera is configured to emulate the specifications of

a typical mobile device camera, with parameters such as:

1. Field of View (FOV): A realistic FOV is set to mimic
the field of view of a handheld camera, ensuring that the
synthetic images capture a representative portion of the
indoor scene.

2. Resolution: The image resolution is set to a standard
resolution (e.g., 640x640 pixels) to balance image quality
and computational efficiency during rendering and
annotation.
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* Distortion parameters: To further enhance realism and
mimic real-world camera imperfections, we introduce lens
distortion effects to the virtual camera model. Radial and
tangential distortion parameters are randomly sampled
within a realistic range to simulate lens imperfections and
create more diverse synthetic images.

After configuring the virtual camera, the next step is to determine
its possible positions within each scene. This involves defining
routes that mimic the movement of a worker inspecting the
construction site. The API provides a tool for manually creating
these routes. While grid-based viewpoints could be used,
manually drawn routes provide a more natural representation
of an inspector’s movement. This parameterized camera pose
generation strategy ensures a systematic and comprehensive
cover age of the virtual environment while maintaining realism
and avoiding repetitive viewpoints.

Image Capture and Preprocessing

Once the virtual environment and camera configurations are
set up, an automated image capture process is initiated using
Python scripting within Isaac Sim. The graphics engine renders
photorealistic RGB images for each defined camera pose,
capturing variations in lighting, materials, and scene clutter.
To enhance dataset diversity, camera angles are systematically
varied across different BIM spaces, and date-time settings are
randomized to simulate different sun positions and lighting
conditions.

Minimal preprocessing is applied before training, primarily
resizing images to a fixed resolution (e.g., 640x640 pixels)
using bilinear interpolation to ensure consistency. Additional
preprocessing, such as noise reduction or enhancement, is
avoided to preserve realism and allow the DL model to learn
from raw synthetic images.

Automated Annotation Generation

A major advantage of synthetic data is the automated generation
of precise ground-truth annotations. Using BIM metadata
and Isaac Sim’s ray tracing, the pipeline produces detailed
annotations, including instance segmentation masks, semantic
segmentation labels, depth maps, and bounding box annotations.

Instance segmentation masks are generated by casting rays to
identify object instances, grouping pixels accordingly. Semantic
segmentation labels classify each pixel based on predefined BIM
object classes (e.g., ducts, pipes, walls). Depth maps provide
geometric scene information, enhancing applications like depth-
aware progress monitoring. Bounding boxes are derived from
instance segmentation masks, enclosing each MEP component
for object detection tasks.

This automated annotation process ensures pixel-perfect labels
across all synthetic images, creating a comprehensive dataset for
training DL models for ICPM tasks.

Deep Learning Model for Instance Segmentation

Accurate and robust instance segmentation of MEP components
is crucial for effective ICPM. To achieve this, we evaluated
several state-of-the-art DL architectures, including Faster
R-CNN [78], Mask R-CNN [40], and various members of the

YOLO family [79,38]. While Faster R-CNN and Mask R-CNN
offer high accuracy, their two-stage architectures result in
significantly slower inference speeds compared to the single-
stage YOLO models. Vision Transformers (ViTs) [42] and the
Segment Anything Model (SAM) [80] were also considered,
however, their higher computational demands made them less
suitable for real-time deployment on a resource-constrained
mobile AR device like the HoloLens 2.

Based on these considerations, we selected YOLOVS, a recent
and efficient iteration of the YOLO family, as the most suitable
model for our application. YOLOvV8 provides an excellent
balance of high accuracy and real-time inference speed, a critical
requirement for on-site deployment.

To address the reality gap between synthetic and real-world data,
we employed a two-stage training strategy incorporating domain
adaptation:

*  Pre-training on synthetic data: The YOLOv8 model was
initially pre-trained on the large and diverse MEP-SEG
synthetic dataset generated as described in Section 3.2. This
pre-training provided a strong foundation for the model to
learn robust features for MEP component detection and
segmentation, leveraging the perfectly labeled synthetic
data

*  Fine-tuning with mixed data: The pre-trained model
was then fine-tuned using a mixed dataset consisting of
synthetic images from MEP-SEG and real-world images
from the MEP-REAL dataset (detailed in Section 4). We
experimented with different ratios of synthetic and real
images to determine the optimal balance for achieving
high performance on real-world data. This fine-tuning,
a form of transfer learning, allows the model to adapt to
the characteristics of real-world images while retaining the
knowledge gained from the synthetic data. We also explored
initializing the model with weights pre-trained on the large-
scale COCO (Common Objects in Context) dataset [81] for
comparison.

Data augmentation techniques, including random rotations,
scaling, horizontal flips, color jittering, and mosaic augmentation
(as implemented in the Ultralytics YOLOvVS framework), were
applied during both pre-training and fine-tuning to further
enhance the model’s robustness and generalization capabilities.
This two-stage training strategy, combining large-scale synthetic
data pre-training with targeted fine-tuning, effectively bridges the
reality gap and enables high accuracy and robustness for MEP
component instance segmentation in real-world construction
environments. Specific training details, hyperparameters, and
evaluation metrics are presented in Section 4.

Augmented Reality Integration and On-site Comparison

To bridge the gap between the digital model and the physical
construction site, we integrated the trained deep learning model
within an AR application, leveraging the capabilities of the
Microsoft HoloLens 2 HMD. This integration enables real-time,
on-site visualization of the instance segmentation results super
imposed onto the actual MEP components, facilitating intuitive
progress monitoring and discrepancy detection.
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AR Device and Application

The Microsoft HoloLens 2 was chosen as the AR platform for this
research due to its advanced spatial mapping, object recognition,
and gesture recognition capabilities, as well as its adaptation in
construction environments. The HoloLens 2 is a self-contained,
untethered holographic computer that allows users to interact
with digital content and holograms in the real world. The device
is equipped with a suite of sensors, including depth sensors, an
Inertial Measurement Unit (IMU), and an RGB camera, which
provide real-time data about the user’s environment and position.

For this application, we utilized the NEXT-BIM application,
which is specifically designed for on-site construction progress
monitoring using AR. NEXT-BIM provides functionalities
for visualizing BIM models in AR, aligning the virtual model
with the physical environment, and interacting with the model
through gestures and voice commands. We integrated our trained
YOLOvVS model into the NEXT-BIM application to enable real-
time instance segmentation of MEP components directly within
the HoloLens 2’s field of view.

Model Deployment

Deploying the trained YOLOv8 model on the HoloLens 2
required careful consideration of the device’s computational
resources and performance constraints. To achieve real-time
inference, we optimized the model by converting it to the
Open Neural Network Exchange (ONNX) format, which is
suitable for efficient deployment on various hardware platforms,
including mobile and embedded devices. The ONNX model
was then integrated into the NEXT-BIM application, enabling
on-device inference without the need for an external server or
cloud connection. This on-device deployment ensures seamless
user experience during field inspections without an internet
connection. The specific details of the model conversion and
integration process are beyond the scope of this paper, but we
ensure it followed industry best practices for deploying DL
models on resource-constrained devices.

Discrepancy Analysis

A crucial aspect of the AR-integrated system is accurately aligning

and superimposing the YOLOvV8 model’s predictions (predicted

masks) with the corresponding elements in the BIM model

(ground truth masks). This enables a direct visual comparison

between the as-designed and as-built states. The overall process is

illustrated in Figure 3, and consists of the following steps:

1. RGB Image Capture and Metadata Acquisition: The
process begins by capturing the real-world scene using the
HoloLens 2’s built-in RGB camera. Simultaneously, we
record crucial metadata associated with the captured image,
including the camera’s position, orientation, focal length,
and resolution. This metadata is essential for accurately
positioning the virtual camera within the BIM environment,
enabling a direct comparison.

2. BIM model filtering for ground truth extraction: To
extract the Ground Truth (GT) masks, we filter the objects
withinthe virtual BIM environment provided by the NEXT-
BIM application. This filtering leverages the Industry
Foundation Classes (IFC) specifications of the objects and
the HoloLens 2’s intrinsic camera data (acquired in step
1). Objects are rigorously filtered based on four criteria, as
illustrated in Figure 4:

E_J
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Hololens metadata I
................
I 1
(2) BIM
I Model
. A N—
—_ *

L)
(4) YOLOVS Inference (3) Semantic Extraction
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(5) Masks Association
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Figure 3: Process explaining the comparison of the BIM model
with the prediction of the DL segmentation model in real-time.
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Figure 4: Illustration of the BIM model filtering process. Objects
that meet all filtering criteria are shown with stripes; those that
do not are shown in gray.

C1 Object type: The object must belong to a predefined target
category (e.g., MEP equipment), specified by 523 the user and
relevant to the inspection task.

C2 Camera frustum: The object must lie within the camera’s
frustum, the truncated pyramid defining the visible 3D space.

C3 Distance: The object must be within a 5-meter distance
threshold, ensuring sufficient accuracy of the HoloLens 2’s 3D
mesh reconstruction.

C4 Occlusion: The object must have a visibility score above
a threshold (e.g., 0.8), calculated based on ray532 casting to
determine the percentage of the object’s surface visible from the
camera’s viewpoint.
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Only objects satisfying all four criteria are considered for GT
mask generation.

3. Semantic extraction and GT mask generation: The filtered
IFC objects are rendered within the virtual environment
using distinct colors corresponding to their respective
classes. This creates a visual representation of the expected
visible objects. A screenshot of this rendered view is
captured, providing a 2D projection of the relevant BIM
elements. This screenshot then undergoes pixel-level
processing to extract the GT masks. Pixels corresponding to
the highlighted MEP components are identified and grouped
based on their instance IDs, resulting in a set of binary
masks representing the ground truth.

4. YOLOVS inference and post-processing: The RGB image
captured in step (1) is fed as input to the deployed YOLOVS
model. The model performs instance seg mentation,
generating a set of predicted masks. The YOLOv8 model
outputs two key tensors: a detection tensor (1x8400x
(4+5+32)) containing 8400 detection proposals (each
with 4 bounding box coordinates, 5 confidence scores,
and 32 segmentation weights), and a proto mask tensor
(1x32x160x160) containing 32 prototype masks of 160x160
pixels. These are combined to generate the final instance
masks. Post-processing includes extracting detection data,
applying Non-Maximum Suppression (NMS) to remove
redundant boxes, generating binary masks, and compiling
results for comparison with ground truth.

5. Mask association: To ensure a robust comparison and
handle potential false positives from the YOLOvV8 model,
we perform mask association before alignment. Each
predicted mask is compared against all intersecting ground
truth (GT) masks. This accounts for situations where a
single predicted object might correspond to multiple objects
in the BIM model, or vice-versa. Only predicted masks that
have a non-zero intersection with at least one GT mask
are considered for further processing. This step effectively
filters out spurious detections that do not correspond to any
element in the BIM model.

6. Mask alignment and discrepancy visualization: After the
mask association step, the remaining predicted masks and
their corresponding GT masks are aligned. This alignment
is crucial to account for minor discrepancies between the
as-designed positions in the BIM model and the actual as
built positions of the MEP components, as well as potential
inaccuracies in camera pose estimation. We evaluated two
alignment methods.

*  Centroid-based alignment: This computationally efficient
method aligns the masks by translating the predicted mask
so that its centroid coincides with the centroid of the GT
mask. The centroid of a mask M is calculated as:

c =Z(x,y)eMx c ZZ(x,y)eMy
* Area(M) 7 Area(M)

()

where (X, y) are the pixel coordinates and Area(M) is the number
of pixels in the mask. This method is fast but less robust to
significant shape variations and rotations.

* Affine transformation alignment: This method estimates
an affine transformation (translation, rotation, and scaling)
that best aligns the predicted mask to the GT mask. We
use the Enhanced Correlation Coefficient (ECC) algorithm
[82], which finds the optimal transformation matrix A and
translation vector t by minimizing the difference between
the warped predicted mask and the GT mask:

_ X
argmin || /g (X, ¥) = Lp g (4 ’ +0) I )

where I is the GT mask image, IPred is the predicted mask
image, and (x, y) are pixel coordinates. This method is more
robust to shape variations but is computationally more intensive.

After alignment, discrepancies between the predicted and GT
masks are visualized within the AR view. Correctly identified
and aligned MEP components (those with an Intersection over
Union (IoU) score above a predefined threshold - typically 0.5)
have their bounding boxes rendered in red, providing immediate
visual feedback to the user. The IoU is calculated as.

_ Area(PNG)
Area(P U G)

loU 3

where P is the predicted mask and G is the ground truth mask.
Objects falling below the IoU threshold, or those not detected by
the model, are not highlighted, indicating potential deviations
from the BIM model.

This comprehensive alignment and superposition process,
combining automated GT mask extraction (with rigorous filtering),
real-time DL-based instance segmentation, and robust mask
alignment, allows an accurate and efficient on-site comparison
between the planned BIM model and the built reality.

Experiments and Results

To evaluate the effectiveness and generalizability of the proposed
methodology, we conducted a series of experiments using both
synthetic and real-world data. The experiments were designed
to assess the performance of the trained YOLOv8 model for
instance segmentation, the accuracy of the alignment algorithms,
and the overall usability of the AR-integrated system for on-site
progress monitoring.

The experiments were performed using a combination of
hardware and software tools. Model training and synthetic
data generation were conducted on a laptop equipped with
an Intel Core 17-10750H processor, 32 GB of RAM, and an
NVIDIA Quadro RTX 3000 GPU. The graphics engine used for
synthetic data generation was NVIDIA Isaac Sim, leveraging its
Omniverse platform and USD (Universal Scene Description)
format for scene representation. The YOLOv8 model was
implemented using the Ultralytics API2, and the AR application
was developed using the NEXT-BIM C++ framework on the
Microsoft HoloLens 2 platform. The HoloLens Development
Mode enabled seamless communication between the device and
a paired computer for data transfer and debugging.
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Synthetic Data Generation Results

This section presents results from our BIM-based synthetic data
generation pipeline, demonstrating its effectiveness in creating
a large, diverse, photorealistic dataset (MEP-SEG) for training
deep learning models for ICPM. The pipeline lever ages BIM
geometry and semantics, coupled with NVIDIA Isaac Sim’s
rendering capabilities, to realistically simulate real-world
construction environments.

MEP-SEG was generated from three diverse BIM models:
an eight-story office tower, a scientific university laboratory
extension, and a business school campus. This variety ensures
the dataset encompasses a wide range of spatial configurations,
architectural styles, and MEP system designs. BIM models
were pre-processed in Revit to remove irrelevant architectural
elements, optimizing rendering performance.

The automated pipeline generated 8,751 640x640 pixel images
with instance segmentation masks, covering 13 common MEP
component classes (e.g., pipes, ducts, cable trays). The instance
distribution (Table 1) reflects real-world imbalances.

Table 1: MEP-SEG instance distribution

Class Instances
Wall 90,801
Pipe 44,998
Floor 44,266
Circular duct 34,973
Rectangular duct 26,227
Framework 11,627
Air vent 8,585
Pole 5,131
Fan coil 4,286
Radiant panel 3,031
Ceiling 2,431
Pipe accessory 1,449
Climatic equipment 1,309

Figure 5 demonstrates the photorealistic quality of the images,
achieved through physically-based materials, realistic lighting
(natural and artificial), and randomized clutter. Diverse
viewpoints were captured via defined inspection paths within
the BIM models.

Annotations (instance segmentation, semantic labels, depth
maps) are pixel-perfect and consistent with the BIM data. The
entire MEP-SEG dataset was generated in approximately 9
hours. The dataset is publicly available [11].

In summary, MEP-SEG provides a high-quality, diverse,
accurately annotated dataset for ICPM deep learning, addressing
data scarcity and advancing automated construction progress
monitoring. Its photorealism and precise annotations make
it a valuable resource for developing robust computer vision
solutions for the construction industry.

(c)

Figure 5: Synthetic image examples and instance segmentation
masks. (a) RGB image. (a*) Mask. (b) RGB image (different
lighting). (b*) Mask. (c) RGB image (partial occlusions). (c*)
Mask.

Model Training and Evaluation

This section details the training procedure, evaluation
methodology, and results for the YOLOVS instance segmentation
model on the synthetic and real-world datasets. The primary
objective is to assess the effectiveness of synthetic data for
training deep learning models for ICPM and to evaluate
the impact of domain adaptation techniques. For evaluation
purposes, real-world images were collected from inside five
construction sites: three used for the MEP-SEG dataset and two
new projects. Two distinct devices were used for data collection:
a smartphone and the Microsoft HoloLens 2 AR glasses. A total
of 350 images were acquired and manually labeled, resulting
in the MEP-REAL dataset that will be used in the following
experiments.

We focused on the detection of five classes: ducts, pipes, air
vent, radiant panels, and fan coil units. These objects are among
the most difficult to detect in MEP domain images, due to their
varied shapes, textures and sizes.

Training Procedure

The YOLOVS instance segmentation models were trained using
a consistent set of hyperparameters across all experiments to
ensure fair comparisons. The training configuration included:

e Optimizer: Stochastic Gradient Descent (SGD)

*  Momentum: 0.937

*  Weight Decay: 0.0005

* Initial Learning Rate: 0.01

*  Learning Rate Schedule: Linear warmup followed by cosine
annealing.

e Batch Size: 6

e Number of Epochs: 1000 (maximum)

e Input Image Size: 640x640 pixels

The learning rate schedule involved a linear warmup phase for
the initial epochs to stabilize training, followed by a cosine
annealing decay to gradually reduce the learning rate, aiding
convergence.
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To prevent overfitting and select the best performing model
iteration, early stopping was employed with a patience of 50
epochs. Training was halted if the primary validation metric
(typically a combination of losses or mAP) did not show
improvement for 50 consecutive epochs. The model weights
corresponding to the epoch with the best validation performance
were saved and used for all subsequent evaluations and
deployment.

Data augmentation techniques, including random rotations,
scaling, horizontal flips, color jittering, and mosaic augmentation,
were applied during training to enhance the model’s robustness
and generalization capabilities against variations encountered in
real-world construction environments.

Evaluation Metrics
The performance of the trained YOLOvV8 models was evaluated
using standard instance segmentation metrics, including:

e Precision: The proportion of correctly predicted positive
instances among all instances predicted as positive.

e Recall: The proportion of correctly predicted positive
instances among all actual positive instances.

*  mAP50: The mean Average Precision (mAP) calculated at
an Intersection over Union (IoU) threshold of 0.5. These
metrics measures the average precision across all classes
and provides an overall assessment of the model’s detection
and segmentation accuracy.

*  mAP50-95: The mAP calculated across IoU thresholds
ranging from 0.5 to 0.95 with a step size of 0.05. This metric
provides a more comprehensive evaluation of the model’s
performance across different levels of localization accuracy.

Model Evaluation and Comparison - First Evaluation

For this initial evaluation, we compared two Transfer Learning
(TL) approaches using YOLOvVS. The first model (COCO TL)
was initialized with weights pre-trained on the COCO dataset
[83]. The second model (Synthetic TL) used weights from a
YOLOVS model we pre-trained on the MEP-SEG synthetic
dataset. These pre-trained models were then fine-tuned on real-
world data extracted from MEP-REAL. We created two versions
of the MEP-REAL dataset for fine-tuning: a small dataset (S,
45 training images, 19 validation images) and a medium dataset
(M, 131 training images, 43 validation images). The fine-tuning
process was identical for both models and datasets. Fine-tuning
typically converged after around 200 epochs (20 minutes of
training) using the COCO TL model and around 180 epochs for
the Synthetic TL model. Performance was evaluated on a held-
out test set of 40 unseen images.

Test results are summarized in Table 2.

Table 2: Performances on COCO vs. synthetic TL on small
(S) and medium (M) real datasets

Metrics COCOTL Synthetic TL

S dataset box mask box mask
Precision (%) 43 51 66 64
Recall (%) 43 34 47 46

mAP50 (%) 42 38 53 49
mAP5095 (%) 26 19 37 30
M dataset box mask box mask
Precision (%) 52 52 69 63
Recall (%) 45 42 40 38
mAP50 (%) 43 41 47 43
mAP5095 (%) 29 24 30 24

As we can see on the S dataset, the model pre-trained on our
synthetic data outperforms the one pre-trained on COCO in all
metrics. Moreover, the gap between box and mask in terms of
precision and recall is smaller with the synthetic TL method,
suggesting that the model better detects the outline of objects.
Looking at the results on the M dataset, we observe a less
significant difference between the two methods, indicating
that the more real data available, the less relevant it is to use a
synthetic dataset for a pre-trained model. In conclusion, using
a synthetic pre-trained model showed promising results for
transferring knowledge to a small real dataset.

Model Evaluation and Comparison - Second Evaluation

For the second evaluation, we built four training datasets to
explore the benefit of augmenting synthetic data with a small
amount of real data:

* A purely real dataset comprising 142 real images from MEP-
REAL.

* A purely synthetic dataset containing 500 carefully selected
synthetic images from MEP-SEG to ensure they were the most
representative.

* A mixed training dataset of 550 images, containing 500
synthetic images and 50 real images, i.e., 10% of the 500
synthetic images.

* A mixed training dataset of 600 images, containing 500
synthetic images and 100 real images, i.e., 20% of the 500
synthetic images.

In each training dataset, 80% of the images were used for training
and the remaining 20% for validation. The YOLOv8 model pre-
trained on the COCO image dataset served as the basis, and the
same training strategy as in the previous evaluation was used.
The evaluation of the precision measure on 50 new real test
images from all training datasets is presented in Table 3.

Table 3: Performance of the YOLOvV8 model trained on
different datasets

Training dataset Precision (%)
Real 77 75
Synthetic 30 29
Synthetic +10% real 71 69
Synthetic +20% real 80 79

In each case, 80% of the images were used for training and 20%
for validation. A YOLOv8 model pre-trained on the COCO
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dataset served as the base, and the training strategy described
in Section 4.2.1 was applied consistently. Performance,
evaluated in terms of precision on 50 unseen real test images,
is presented in Table 3. As expected, the model trained only on
synthetic data showed poor generalization to real images (30%
box, 29% mask precision). The model trained only on the 142
real images achieved respectable baseline performance (77%
box, 75% mask). Most importantly, incorporating even a small
amount of real data into the synthetic training set resulted in
significant improvements. Adding just 50 real images (Mixed
10%) significantly increased accuracy (71% box, 69% mask),
approaching the performance of the all-real model despite using
fewer real images overall in its source pool. The Mixed-20%
model, achieved the highest precision (80% box, 79% mask),
surpassing the performance of the model trained on the larger
dataset of 142 purely real images. This result strongly suggests
the efficiency and effectiveness of the use of synthetic data.
By strategically combining a large synthetic dataset with a
relatively small amount of real data (in this case, 100 images),
we can achieve superior performance compared to relying solely
on a larger collection of manually annotated real-world images.
In relation to the next section of this chapter, the model using
the combination of 500 synthetic images and 100 real images is
retained (Mixed-20%).

For this model, the training and validation losses for both
bounding box regression (box loss) and segmentation (seg
loss), are illustrated in Figure 6. The training losses consistently
decreased and converged, indicating that the model was
effectively learning from the training data. The validation losses
also decreased initially but exhibited more fluctuation and
plateaued after a certain number of epochs, suggesting the onset
of diminishing returns or potential overfitting.

train/box_loss train/seg_loss
1.6 3.54 —e— results
smooth
1.4 A
1.2 A
1.0 A
0.8, : x :
o] 200 0 200
val/box_loss val/seg_loss
3.0 A
1.5 |
2.8
1.4 4 2.6
1.3 4 2.4 A
T T 2'2 L T T
o 200 (0] 200

Figure 6: Training and validation loss curves for the YOLOVS
model (Mixed20% dataset). Top row: Training box loss and
segmentation loss. Bottom row: Validation box loss and
segmentation loss. The plots show convergence during training
and the plateauing of validation loss used for early stopping.

Furthermore, after training, an analysis was performed to determine
the optimal confidence threshold for balancing precision and
recall, thereby maximizing the F1 score. Figure 7 shows the F1
score for each class and the average across all classes as a function
of the confidence threshold, evaluated on the validation set. Based
on this analysis, an optimal confidence threshold of 0.365 was
identified, achieving the highest average F1 score of 0.67. This
threshold was subsequently used during inference and evaluation
to filter detections and ensure a balanced performance.

F1-Confidence Curve
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Figure 7: F1 score versus confidence threshold for each class
and averaged across all classes (evaluated on the validation set).
The plot indicates that the maximum average F1 score (0.67) is
achieved at a confidence threshold of 0.365.

Qualitative Results

Beyond quantitative metrics, qualitative analysis of the model’s
predictions on unseen real-world images provides valuable
insights into its practical performance. Figures 8 and 9 present
representative examples from the best-performing model
(Mixed-20%), illustrating both successful inferences and
common failure modes, respectively.

Figure 8 demonstrates the model’s capability to accurately
detect and segment various MEP components across a range
of challenging conditions often encountered on construction
sites. As detailed in the caption, the model shows robustness to
complex layouts, varying scales, visual clutter, different camera
qualities, and difficult lighting scenarios (Fig. 8a-f). These
successful examples validate the effectiveness of the mixed
synthetic and real data training approach for achieving good
generalization in practical settings.

Figure 8: Qualitative examples of successful instance
segmentation results using the YOLOV8 model (Mixed-20%) on
diverse real-world indoor construction scenes. (a) Scene with a
high ceiling, showcasing detection of ducts and radiant panels.
(b) Scene demonstrating differentiation between pipes and ducts.
(¢) Accurate detection of multiple fan coil units amidst clutter.
(d) Performance on an image captured with a lower-end camera.
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(e) Detection in a long-range scene with high contrast lighting.
(f) Robustness to complex and varied background structures.

Conversely, Figure 9 highlights persistent challenges and
typical failure modes. As described in the caption, these include
difficulties with severe occlusion (Figure 9b), missed detections
of smaller or less distinct objects (Figure 9a), misclassifications
between visually similar items (Figure 9c), incomplete
segmentations (Figure 9d), and sensitivity to specific material
properties (e.g., black insulation, Figure 9¢) or extreme lighting
conditions (Figure 9f). These limitations point towards the need
for further improvements, particularly in enhancing training
data diversity and model robustness to handle edge cases and
complex environmental factors.

Overall, the qualitative results provide a balanced perspective,
confirming the model’s strong potential for [CPM while clearly
identifying areas for future refinement to increase reliability
across the full spectrum of real-world construction scenarios.

While demonstrating strong performance in many typical
construction scenarios, the identified failure modes pinpoint
specific areas where targeted improvements in data and modeling
can lead to enhanced reliability and broader applicability of the
proposed ICPM system.

d) Segmentation incomplete ) Black pipe insulation not detected 1) Challenging lighting condit

Figure 9: Qualitative examples of failure cases and limitations
observed with the YOLOvS model (Mixed-20%) on real-world
indoor construction images. (a) Undetected pipes (false negatives)
alongside correctly detected ducts. (b) Pipes heavily occluded
by cable routing frames are missed. (c) Misclassification of a
light fixture as an air vent. (d) Incomplete segmentation masks
for detected radiant panels. (e) Failure to detect pipes covered
in black insulation. (f) Reduced detection and segmentation
accuracy under challenging lighting conditions (glare and
shadow).

Mask Alignment Analysis

To quantify and visualize the discrepancies between predicted
and ground truth masks, and to evaluate the effectiveness of
different alignment strategies, we conducted a comparative
analysis of centroid-based and affine transformation alignment
methods. As described in Section 3.4.3, centroid-based alignment
offers computational efficiency but is less precise, while affine
transformation alignment (using the ECC algorithm) provides
higher accuracy at the cost of increased computational time.

This analysis was carried out on a new dataset acquired as
part of the Avignon Archive Centre project, which provides a
controlled environment for evaluating alignment performance.

This database, consisting of 133 pairs of images, represents a
total of 829 object occurrences divided into 5 classes: 79 fan
coils, 175 ducts, 82 diffusers, 593 pipes and 40 radiant panels.

The analysis of these images by our algorithm identified 28%
of the objects present in the scene (approximately 267 objects),
confirming the presence of these elements on the construction
site at the time of data acquisition. For each detected object, a
comparison between the predicted mask and the corresponding
ground truth mask was performed, including both alignment
methods: centroid-based and affine transformation-based. This
process generated a total of 450 compared alignments. The
results, averaged across all samples, are presented below (Table
4):

Table 4: Average results of mask comparison using centroid-
based and affine transformation alignment on the Avignon
Archive Center Dataset

Metric Centroid Affine
Distance Centroids (px) 1 24
IoU 0.40 0.64
Dice Coefficient 0.54 0.76
Time (ms) 30 2110

Centroid-based alignment, which is very fast (30 ms on
average), offers limited alignment accuracy, with an IoU of
0.40 and a Dice coefficient of 0.54. On the other hand, affine
alignment significantly improves the alignment quality, with
an IoU of 0.64 and a Dice coefficient of 0.76. However, this
precision improvement comes at the cost of a significantly higher
computation time (2.1 seconds on average), approximately 70
times slower than centroid-based alignment.

It is noteworthy that the centroid distance is significantly
higher for affine alignment (24px versus lpx for centroid-
based alignment). This can be explained by the fact that affine
transformation, unlike the simple translation performed by
centroid-based alignment, includes rotations and scale changes.
These transformations can shift the centroid of the aligned
predicted mask, even if the overlap with the ground truth mask is
optimal. Consequently, centroid distance is not a relevant metric
for evaluating the quality of affine alignment. IoU and the Dice
coefficient, however, remain reliable indicators of the overlap
quality between masks.

This experiment on a larger dataset highlights the performance
and limitations of the proposed alignment methods. It confirms
that affine alignment, although more computationally expensive,
provides significantly higher accuracy. The choice of alignment
method will thus depend on application constraints: prioritizing
speed with centroid-based alignment or precision with affine
alignment. The analysis of metrics across the entire dataset allows
the identification of problematic cases and guides improvements
in the segmentation model and alignment algorithms. It also
validates the potential of the approach for work inspection and
quality control, although optimizations are necessary for real-
time use on devices such as the HoloLens 2.
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User study and Acceptability Assessment

To comprehensively evaluate the practical usability, user
acceptance, and perceived value of the AR-integrated ICPM
system, auser study was conducted with a panel of 21 construction
professionals. This section summarizes the key findings from
this study, providing insights into the user experience, perceived
benefits, and potential challenges associated with adopting the
proposed technology in real-world construction settings.

Methodology

The user study employed a mixed-methods approach, combining
quantitative and qualitative data collection techniques to provide
a holistic understanding of user perspectives. The methodology
comprised three main components:

* Online questionnaire: A quantitative questionnaire was
administered to a panel of 21 construction professionals,
all of whom had prior experience using the NEXT-BIM
solution and the HoloLens 2 headset. The questionnaire
utilized Likert scale questions (1-strongly disagree to 5-
strongly agree) to assess usability, acceptability, comfort,
and perceived effectiveness, complemented by open-
ended questions for gathering qualitative feedback and
suggestions.

*  Semi-structured interviews: In-depth, semi-structured
interviews were conducted with a subset of 10 questionnaire
participants, selected to represent diverse roles and
experiences within the construction industry. These
interviews explored the user experience in more detail,
looking at perceived advantages and disadvantages,
integration  challenges and recommendations for
improvement.

*  On-site observations: Throughout the research project and
during on-site testing of the AR-integrated ICPM system,
the researchers collected observational data, acting as both
users and observers. These observations provided contextual
insights into real-world usage scenarios, user interactions
with the system, and the challenges and opportunities
encountered in practical implementation.

This mixed-methods approach allowed for triangulation of
data, enhancing the validity and reliability of the user study
findings. The questionnaire provided quantitative measures of
user perceptions, while the interviews and observations offered
rich qualitative insights into the nuances of user experience and
the practical implications of adopting the AR-integrated ICPM
system.

Participant Demographics and NEXT-BIM Usage

Table 5 summarizes the demographics and NEXT-BIM usage
patterns of the study participants. The majority of participants
(47.6%) had used NEXT-BIM for over a year, indicating
substantial experience with the platform. A further 28.6% had
used it for between 6 months and a year. In terms of usage
frequency (N=19), the most common response was” about once
a month” (42.1%), followed by” about once a week™ (36.8%).
Participants represented a variety of roles, with BIM engineers
(38.1%) being the largest group, followed by site managers
(23.8%). This diverse range of roles and experience levels
provides a representative sample of potential users.

Table 5: User Study Demographics and NEXT-BIM Usage
(N=21, except where noted)

Characteristic ‘ Percentage
NEXT-BIM Usage Duration
Less than 3 months 9.5%
Between 3 and 6 months 14.3%
Between 6 months and 1 year 28.6%
More than 1 year 47.6%
NEXT-BIM Usage Frequency (N=19)
Daily 15.8%
About once a week 36.8%
About once a month 42.1%
Less than once a month 5.3%
Primary Role on Construction Sites
Site Manager 23.8%
Works Supervisor 9.5%
Quality Inspector 9.5%
BIM Engineer 38.1%
Design Office Manager 14.3%
Study Technician 0%
Quality Control Manager 4.8%

Quantitative Results

Analysis of the Likert scale responses, presented in Table 6,
reveals a generally high level of user acceptance and perceived
usefulness of the AR-integrated ICPM system. Regarding work
efficiency (Question 4), a substantial majority of participants
agreed (38.1%) or strongly agreed (52.4%) that the system
enhanced their productivity. However, responses to the ease
of integration into existing workflows (Question 1) were more
divided. While 38.1% agreed and 4.8% strongly agreed with easy
integration, a considerable 42.9% remained neutral, and 14.3%
disagreed. This suggests that while the system is perceived as
effective, further refinement may be necessary to optimize its
integration with established construction processes.

Concerning usability, the system received overwhelmingly
positive feedback. A significant portion of participants agreed
(61.9%) or strongly agreed (28.6%) that the user interface
was intuitive and easy to comprehend (Question 5). Similarly,
a high proportion agreed (57.1%) or strongly agreed (33.3%)
that the application was easy to utilize daily (Question 7). The
initial training provided (Question 8) was deemed sufficient by a
majority, with 57.1% agreeing and 23.8% strongly agreeing. The
augmented reality visualization (Question 3) was also highly
regarded, with 66.7% agreeing and 9.5% strongly agreeing
on its clarity and ease of interpretation. This confirms the
effectiveness of the AR component in presenting BIM models
and instance segmentation results in a readily understandable
manner. Concerning the application’s functionalities (Question
6), 47.6% of participants agreed and 33.3% strongly agreed on
their relevancy.

Conversely, the HoloLens 2 headset’s comfort during extended
use (Question 2) received a more mixed assessment. Only 23.8%
agreed and 19% strongly agreed regarding comfort, while 38.1%
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remained neutral, and a combined 19% disagreed. This indicates
a potential area for improvement or consideration regarding
prolonged use in field settings.

Table 6: User Study Results: Questionnaire Responses (N=21)

. Disagree | Neutral | Agree | Strongly
Question (1-2) ) @) | Agree(5)
1. Easy integration 3 9 8 o
into workflow (14.3%) | (42.9%) | (38.1%) 14.8%)
2. HoloLens 2 g 5
0, 0,
con'lfort (long 4 (19%) (38.1%) | (23.8%) 4 (19%)
periods)
3. Clear & easy AR o 5 14
2(9.59
visualization 0(0%) (23.8%) | (66.7%) 9.5%)
4. Increased work 8 11
0, 0,
efficiency 0(0%) | 2(:5%) (38.1%) | (52.4%)
5. Intuitive & easy o o 13 0
user interface 00%) |20:5%) (61.9%) 6 (28.6%)
6. Relevant app o 10
4 (199 .39
functionalities 0(0%) (19%) (47.6%) 7(33.3%)
7. Easy to use daily o o 12 0
2 (9.6%) | 1 (4.8%) (57.1%) 7 (33.3%)
8. Sufficient initial o o 12 0
— 0(0%) | 4(19%) (57.1%) 5(23.8%)
Qualitative Insights
The semi-structured interviews and on-site observations

yielded rich qualitative data, providing nuanced perspectives
that complement the quantitative findings. A prominent theme
emerging from the interviews was the substantial time savings
afforded by the system. Participants consistently reported a
reduction in the time required for on-site inspections compared
to traditional manual methods. One construction manager, for
instance, estimated a decrease in inspection time from half a
day to approximately one hour, a compelling illustration of the
potential efficiency gains.

Beyond time savings, participants frequently highlighted the
system’s positive impact on communication and collaboration
within the construction team. The AR visualization served
as a shared, contextualized platform for discussing progress,
identifying discrepancies, and coordinating corrective actions.
This visual communication was perceived as a significant
improvement over traditional reporting methods, facilitating
clearer and more effective information exchange.

Furthermore, the integration of automated object detection and
segmentation with the AR overlay was perceived to enhance
the accuracy of progress monitoring and mitigate the risk of
errors inherent in manual assessments. The ability to visually
compare the as-built reality with the BIM model in real-time
was considered a valuable asset for ensuring quality control and
adherence to design specifications.

Despite the overwhelmingly positive feedback, participants
also identified several challenges and limitations. Consistent
with the quantitative findings, discomfort associated with
prolonged use of the HoloLens 2 was a recurring concern.
Additionally, the system’s performance was acknowledged

to be contingent upon the quality and completeness of the
underlying BIM model; incomplete or inaccurate models could
limit the system’s effectiveness. Environmental factors, such as
complex geometries, cluttered environments, and suboptimal
lighting conditions, were also noted as potential impediments to
optimal performance. Finally, while generally perceived as user
friendly, the seamless integration of the system into pre-existing
workflows was identified as an area requiring further attention
and potential adaptation.

The user study results indicate a strong positive reception of the
AR-integrated ICPM system among construction professionals.
The high levels of agreement on efficiency gains, usability, and
the value of AR visualization demonstrate the system’s potential
to significantly improve progress monitoring practices. The
mixed feedback on HoloLens 2 comfort, while a limitation,
is consistent with broader user experiences with HMDs. The
identified challenges, such as BIM model dependency and
environmental factors, highlight areas for future development
and refinement.

In conclusion, the user study provides valuable evidence for
the practical usability, user acceptance, and perceived benefits
of the AR-integrated ICPM system. The findings suggest that
the proposed methodology has strong potential for adoption in
the construction industry, offering significant improvements in
efficiency, accuracy, and communication.

Discussion

Summary of Findings

The experimental evaluations and user study conducted in this
research provide compelling evidence for the effectiveness
and practical potential of the proposed AR-integrated ICPM
methodology. The key findings demonstrate the successful in
tegration of multiple technologies to address the challenges of
traditional progress monitoring.

The MEP-SEG synthetic dataset proved to be a valuable
resource for training high-performing DL models. YOLOVS
models trained on this synthetic data, especially when fine-tuned
with a small amount of real-world data, achieved comparable or
superior performance to models trained solely on limited real-
world datasets. This highlights the potential of synthetic data to
overcome the critical data scarcity bottleneck in construction
applications.

Furthermore, the integration of the trained YOLOvV8 model into
the NEXT-BIM AR application on the HoloLens 2 successfully
enabled real-time, on-site progress monitoring. The AR system
provided users with an intuitive and immersive interface for
comparing planned and built conditions, facilitating efficient and
accurate progress assessment through the direct visualization of
BIM models and instance segmentation results.

The implementation and evaluation of mask alignment
methods (centroid-based and affine transformation) provided
valuable tools for quantifying and visualizing discrepancies.
Affine transformation alignment, while computationally more
demanding, offered superior accuracy, enabling a more refined
analysis of deviations from the BIM model. This highlights the
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importance of choosing appropriate alignment strategies based
on the specific application requirements.

Finally, the user study confirmed a generally positive perception
of the AR-integrated system among construction professionals.
Participants emphasized the system’s usability, perceived
usefulness, and its potential to improve efficiency, accuracy, and
communication in progress monitoring. The AR visualization
and real-time feedback were particularly well-received,
demonstrating the practical value and user friendliness of the
proposed solution.

These findings collectively demonstrate the successful
development and validation of an innovative AR-integrated
ICPM methodology, effectively leveraging BIM, synthetic
data, and DL to address key challenges in construction progress
monitoring.

Limitations

While the proposed AR-integrated ICPM methodology
demonstrates promising results, it is crucial to acknowledge
certain limitations inherent in the current study. These
limitations define critical areas for future research and
development, ultimately contributing to the enhanced
robustness, generalizability, and practical applicability of the
approach. A primary concern lies with the dataset realism and
the persistent domain gap. Despite the photorealistic nature
of the MEP-SEG synthetic dataset, a discernible difference
remains between the visual characteristics of synthetic and real-
world constructionsite imagery. Although domain adaptation
techniques were employed, further investigation is required to
fully bridge this reality gap and bolster the model’s resilience to
the complexities and variations encountered in authentic scenes.
Factors such as sensor noise, fluctuating lighting conditions,
and the un predictable arrangement of objects in real-world
environments may still present challenges to the model’s
generalization capabilities.

Furthermore, the accuracy and reliability of the proposed
ICPM methodology are intrinsically linked to the quality and
completeness of the BIM models utilized for both synthetic
data generation and on-site comparison. Incomplete, inaccurate,
or outdated BIM models can significantly limit the system’s
effectiveness and introduce discrepancies between the
virtual and real-world representations. Consequently, further
research should explore automated methods for validating and
correcting BIM models to ensure data integrity and reliability
for ICPM applications. The computational constraints of AR
devices also pose a significant challenge. While the on-device
deployment of the YOLOv8 model on HoloLens 2 enables
real-time performance, it is inherently constrained by the
limited computational resources of the mobile AR device. The
complexity of the DL model, the resolution of the input images,
and the object density within the scene can all impact the frame
rate and responsiveness of the AR application, particularly within
highly cluttered or complex indoor environments. Optimizing the
model architecture, exploring model compression techniques,
and leveraging hardware acceleration are therefore essential
for ensuring seamless real-time performance on resource-
constrained AR devices.

The scope of the current evaluation also warrants further
attention. While the on-site evaluation of the AR-integrated
ICPM system provided valuable user feedback and qualitative
insights, it was limited to a preliminary study involving a single
construction professional and specific types of construction
sites. More extensive user studies, encompassing a larger and
more diverse cohort of users and a broader range of construction
projects and scenarios, are necessary to comprehensively assess
the usability, acceptability, and practical impact of the proposed
methodology in real-world settings. Finally, the study’s focus
on MEP components, while pertinent to indoor construction
progress monitoring, represents only a subset of the building
elements relevant to overall project management. Expanding
the methodology to encompass a wider spectrum of construction
elements, including structural components, architectural finishes,
and temporary works, would enhance the comprehensiveness
and applicability of the AR-integrated ICPM system for holistic
construction progress assessment.

Conclusion

This research explored a novel AR-integrated methodology
for indoor construction progress monitoring, combining BIM,
synthetic data generation, Deep Learning (DL)-based instance
segmentation, and AR visualization. Experimental validation
and a user study demonstrated the initial feasibility and
potential of the system to contribute to more automated progress
monitoring. Key contributions include a scalable BIM-based
synthetic data pipeline, the adaptation of a YOLOv8 model
for MEP component segmentation, seamless integration with a
HoloLens 2 AR application, and a preliminary evaluation.

Findings suggest the value of synthetic data for training robust
DL models and the promise of the AR-integrated ICPM system
for more efficient and reliable progress monitoring. However,
it is important to acknowledge limitations related to synthetic
dataset realism, reliance on accurate BIM models, and constraints
inherent to AR devices. This research establishes a foundational
step towards exploring automated, data-driven construction
progress monitoring.

Future research will focus on addressing current limitations
by improving synthetic data realism, exploring advanced
domain adaptation techniques, optimizing the DL model for
AR device performance, expanding the system’s scope beyond
MEP components, and conducting more extensive real-world
deployments. This work represents an early step towards a
more automated, data-driven approach to construction progress
monitoring, with the potential to contribute to more efficient and
accurate construction projects.
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